
Recurrent Neural Networks

Feed-Forward Neural Networks

● Hierarchy of neurons

● Input layer, hidden layers, output layer

● Does not have a memory

● Independent of last decision

Recurrent Neural Networks
A Recurrent Neural Network (RNN) learns temporal

correlations between arbitrarily distant events

RNNs Regress, classify, predict and generate sequential
data in almost all machine learning domains

.....
... ..

Recurrent Neural Networks

● Memory through recurrent connections

● Feedback information from last steps

● Loops in the network

Recurrent connection

A Different Perspective

● RNN can be seen as multiple ANN communicating

● Message sent between them

● Ideal for sequence learning (text, music, video)

● Time-series prediction

t t+1 t+2

u u

Backpropagation through Time

● The same as BP

● Use unfolded network

● Define maximum sequence length

t

Backpropagation through Time

● The same as BP

● Use unfolded network

● Define maximum sequence length

Backpropagation through Time (BBTT)

● Error function

Simple RNNs Revisited

.....
... ..

Hidden layer to
hidden layer
connections
allow temporal
information to
flow through the
RNN

BPTT Chain Rule

The following term gives the relation of error through time where k < t

Immediate partial
derivative

Partial derivative of
loss with respect to
output

Vanishing and Exploding Gradients

Significant problem for learning long term dependencies

Recurrent Weight Matrix
Contribution

If the Eigen values of the recurrent
weight matrix deviate below one, the

contribution of “distant” events quickly
converges to zero

Vanishing and Exploding Gradients

This problem occurs when the norm of the gradients during training vanish or
explode

Activation Function
Contribution

If the gradient of the activation
function deviates considerably from
one, the product above explodes or

vanishes as k << t

Sequence MNIST Benchmark
● Goal:

- Classify handwritten digits by reading one pixel at a time

- Proposed as benchmark RNN dataset by Le, Jaitly and Hinton

● Input tensor shape

● (batch, pixel)

● Output tensor shape

● (batch, one_hot_sz)

● Sequence length

● 784 – pixels in 1 image

● Cross entropy loss

[Source] http://yann.lecun.com/exdb/mnist/

http://yann.lecun.com/exdb/mnist/

PyTorch Dataset Class SeqMNIST
import torch
from torch.utils.data import Dataset

class SequentialMNIST(Dataset):

 def __init__(self, mode=MODE_TRAIN, pixel_wise=True, permute=False):
 #Initialize dataset here

 #Set the mode depending on train test or val
 def train(self):
 #self.mode = SequentialMNIST.MODE_TRAIN
 def val(self):
 #self.mode = SequentialMNIST.MODE_VAL
 def test(self):
 #self.mode = SequentialMNIST.MODE_TEST

 def __len__(self):
 #Return size of dataset for train, test, or val
 def __getitem__(self, i):
 #Depending on the mode – train, val test

return batch_of_elements

Training Script Continued
def run_sequence(seq, target):
 predicted_list = []
 y_list = []

 #Initialize memory states
 model.reset(batch_size=seq.size(0), cuda=args.cuda)

 #Execute inference on the model sequentially
 for i, input_t in enumerate(seq.chunk(seq.size(1), dim=1)):
 input_t = input_t.squeeze(1)

 p = model(input_t)

 predicted_list.append(p)
 y_list.append(target)

 #Return predicted values as well as their corresponding targets
 return predicted_list, y_list

Training Script SeqMNIST

def train(epoch, model, dset):
 model.train()
 dset.train()
 #total_loss = 0.0, steps=0, n_correct=0, n_possible=0

 for batch_idx, (data, target) in enumerate(data_loader):
 if args.cuda:
 data, target = data.cuda().double(), target.cuda().double()
 data, target = Variable(data), Variable(target)

 predicted_list, y_list = run_sequence(data, target) #Defined on next slide

 pred = predicted_list[-1] #Take the final output from the RNN
 y_ = y_list[-1].long() #Take the final batch of targets

 prediction = pred.data.max(1, keepdim=True)[1].long()
 n_correct += prediction.eq(y_.data.view_as(prediction)).sum().cpu().numpy()
 n_possible += int(prediction.shape[0])

 loss = F.nll_loss(pred, y_) #Calculate batch loss

 loss.backward() #Calculate gradients
 optimizer.step() #Update NN weights

Training Script Continued
def run_sequence(seq, target):
 predicted_list = []
 y_list = []

 #Initialize memory states
 model.reset(batch_size=seq.size(0), cuda=args.cuda)

 #Execute inference on the model sequentially
 for i, input_t in enumerate(seq.chunk(seq.size(1), dim=1)):
 input_t = input_t.squeeze(1)

 p = model(input_t)

 predicted_list.append(p)
 y_list.append(target)

 #Return predicted values as well as their corresponding targets
 return predicted_list, y_list

Modern Solutions – Architecture
Modern RNN architectures have been proposed to address the
vanishing and exploding gradient problem

Model Description Reference

LSTM Most ubiquitous RNN architecture today. Adds gated
computations and cell memory state for long term memory.

http://www.bioinf.jku
.at/publications/olde
r/2604.pdf

LSTM
Forget Gates

Adds new gate to LSTM architecture that focuses on “forgetting”
long-term dependencies that are no longer relevant.

https://pdfs.seman
ticscholar.org/115
4/0131eae85b2e11d5
3df7f1360eeb6476e7
f4.pdf

Peephole
LSTM

Uses previous cell state for gate computations instead of hidden
state; accesses constant error carousel.

ftp://ftp.idsia.ch/
pub/juergen/TimeCou
nt-IJCNN2000.pdf

GRU Combines input and forget gates into single update gate and
combines the cell and hidden memory states.

https://arxiv.org/pd
f/1406.1078v3.pdf

IndRNN Forces the recurrent weight matrix to be a vector that is multiplied
element-wise by the previous hidden state.

https://arxiv.org/pd
f/1803.04831.pdf

UGRNN
RNN+

Modern architectures made to enhance trainability of deeply-
stacked (RNN+) and shallow (UGRNN) models.

https://arxiv.org/pd
f/1611.09913.pdf

http://www.bioinf.jku.at/publications/older/2604.pdf
http://www.bioinf.jku.at/publications/older/2604.pdf
http://www.bioinf.jku.at/publications/older/2604.pdf
https://pdfs.semanticscholar.org/1154/0131eae85b2e11d53df7f1360eeb6476e7f4.pdf
https://pdfs.semanticscholar.org/1154/0131eae85b2e11d53df7f1360eeb6476e7f4.pdf
https://pdfs.semanticscholar.org/1154/0131eae85b2e11d53df7f1360eeb6476e7f4.pdf
https://pdfs.semanticscholar.org/1154/0131eae85b2e11d53df7f1360eeb6476e7f4.pdf
https://pdfs.semanticscholar.org/1154/0131eae85b2e11d53df7f1360eeb6476e7f4.pdf
ftp://ftp.idsia.ch/pub/juergen/TimeCount-IJCNN2000.pdf
ftp://ftp.idsia.ch/pub/juergen/TimeCount-IJCNN2000.pdf
ftp://ftp.idsia.ch/pub/juergen/TimeCount-IJCNN2000.pdf
https://arxiv.org/pdf/1406.1078v3.pdf
https://arxiv.org/pdf/1406.1078v3.pdf
https://arxiv.org/pdf/1803.04831.pdf
https://arxiv.org/pdf/1803.04831.pdf
https://arxiv.org/pdf/1611.09913.pdf
https://arxiv.org/pdf/1611.09913.pdf

Modern Solutions: Initialization

Eigenvalues of the recurrent weight matrix need to be equal to one in
order to avoid the vanishing and exploding gradient problem

Both of these matrices have Eigenvalues equal to one

In practice, soft constraints imposed on these matrices after
initialization improves trainability of RNNs

Identity Initialization Orthogonal Initialization

Modern Solutions: Activations

The derivative of the activation function is part of
the product that causes the temporal gradient to
vanish or explode

Sigmoid Activation

Max value of df/dx is .25

Temporal gradient vanishes
quickly with this activation
function

Modern Solutions: Activations
Tanh Activation ReLu Activation

ReLu activation has desirable gradient
behavior for values of x > 0

For x < 0 the temporal gradient does
not exist

Heavily used in modern gated
recurrent architectures

The gradient vanishes more quickly
the further x deviates from 0

Custom RNN Cell Template PyTorch
class CustomRNNCell(nn.Module):
 def __init__(self, input_size,
 # Define custom variables of interest - dropout ect
 hidden_size):
 super(CustomRNNCell, self).__init__()
 self.input_size = input_size
 self.hidden_size = hidden_size

 #Initialize global variables
 #Initialize parameters W, U, b ect.

 self.hidden_state = None

 def reset(self, batch_size=1, cuda=True):
 #Initialize Memory States h_t, c_t ect.

 def forward(self, X_t):
 h_t_previous = self.hidden_state #extract memory states (h_t-1, c_t-1)
 #Do computation here
 #Set memory states
 self.hidden_state = y
 return y

IRNN in PyTorch

def forward(self, X_t):
 h_t_previous = self.hidden_state

 out = F.relu(torch.mm(X_t, self.W_x) +
 torch.mm(h_t_previous, self.U_h) +
self.b)

 self.hidden_state = out
 return out

self.W_x = nn.Parameter(torch.zeros(input_size, hidden_size))
self.W_x = nn.init.xavier_normal_(self.W_x)

#Identity recurrent weight matrix initialization
self.U_h = torch.nn.Parameter(torch.eye(hidden_size))

self.b = nn.Parameter(torch.zeros(hidden_size))

Identity matrix
initialization

F.relu – Rectified
linear unit activation
function

LSTM & Peephole Connections
def forward(self, X_t):
 h_t_previous, c_t_previous = self.states

 f_t = F.sigmoid(
 torch.mm(X_t, self.W_f) + torch.mm(h_t_previous, self.U_f) + self.b_f)

 i_t = F.sigmoid(
 torch.mm(X_t, self.W_i) + torch.mm(h_t_previous, self.U_i) + self.b_i)

 o_t = F.sigmoid(
 torch.mm(X_t, self.W_o) + torch.mm(h_t_previous, self.U_o) + self.b_o)

 c_hat_t = F.tanh(
 torch.mm(X_t, self.W_c) + torch.mm(h_t_previous, self.U_c) + self.b_c)

c_t = (f_t * c_t_previous) + (i_t * c_hat_t)

 h_t = o_t * F.tanh(c_t)

 self.states = (h_t, c_t)
 return h_t

Replace h_t_previous with
c_t_previous for Peephole LSTM
variant

GRU
def forward(self, X_t):

 h_t_previous = self.recurrent_state

 z_t = F.sigmoid(
 torch.mm(X_t, self.W_z) + torch.mm(h_t_previous, self.U_z) + self.b_z)

 r_t = F.sigmoid(
 torch.mm(X_t, self.W_r) + torch.mm(h_t_previous, self.U_r) + self.b_r)

 h_t = z_t * h_t_previous + ((z_t - 1) * -1) * F.tanh(
 torch.mm(X_t, self.W_h) + torch.mm((r_t * h_t_previous), self.U_h) + self.b_h)

 self.recurrent_state = h_t

 return h_t

UGRNN
def forward(self, X_t):
 h_t_previous=self.states

 g_t = F.sigmoid(
 torch.mm(X_t, self.W_g) + torch.mm(h_t_previous, self.U_g) + self.b_g)

 c_t = F.tanh(
 torch.mm(X_t, self.W_c) + torch.mm(h_t_previous, self.U_c) + self.b_c)

 h_t = g_t * h_t_previous + ((g_t - 1) * -1) * c_t

 self.states = h_t
 return h_t

Intersection RNN
def forward(self, X_t):

 h_t_previous = self.states

 y_in = F.tanh(
 torch.mm(X_t, self.W_yin) + torch.mm(h_t_previous, self.U_yin) + self.b_yin)

 h_in = F.tanh(
 torch.mm(X_t, self.W_hin) + torch.mm(h_t_previous, self.U_hin) + self.b_hin)

 g_y = F.sigmoid(
 torch.mm(X_t, self.W_gy) + torch.mm(h_t_previous, self.U_gy) + self.b_gy)

 g_h = F.sigmoid(
 torch.mm(X_t, self.W_gh) + torch.mm(h_t_previous, self.U_gh) + self.b_gh)

 y_t = g_y * X_t + ((g_y - 1) * -1) * y_in

 h_t = g_h * h_t_previous + ((g_h - 1) *-1) * h_in

 self.states = h_t
 return y_t

Exercise: RNN ZOO
Test novel RNN architectures on famous benchmark tasks
Sequential MNIST and Permuted Sequential MNIST. Partial code
is provided.

python train.py --hx=50 --layers=2 –model-type=lstm

run “python train.py --help” for description of hyperparameters

Students Task:

● Define weight matrix and recurrent weight matrix for vanilla
RNN. See models/rnn.py

● Define LSTM forward method (LSTM secret sauce).

See models/lstm.py

● Define how to reset recurrent states for GRU.

See models/gru.py

Sequence MNIST
● Goal

Classify handwritten digits by reading one pixel at a time

Proposed as benchmark RNN dataset by Le, Jaitly and Hinton

● Input tensor shape:

(batch, pixel)

● Output tensor shape:

(batch, one_hot_sz)

● Sequence length:

784 – pixels in 1 image

● Cross entropy loss

Convolutional RNNs

Learns spatio-temporal correlations

.....
... ..

X is a set of activation
maps

X is commonly an RGB
or RGBD image

H is a set of activation
maps

H depends on multiple
factors, including the
number of filters in the
hidden layer, stride,
padding, ect.

Convolutional RNNs

Feature extraction no longer occurs by fully connecting
the input with its respective weight matrix; features
are now extracted through convolutional layers

Be careful! Convolving H and U needs to produce the same
shape tensor as convolving W and X

For recurrent convolutional layer

Set stride equal to one

Make the number of filters in U equal to the number of
filters in W

Set proper padding – assuming stride of one

Dodge Ball

Can a robot dodge balls
with a RGB video sensor?

Goal:

Successfully predict
future collisions given a
randomly initialized
projectile

Solution:

Convolutional RNN that
learns the mapping
between video input and
probability of collision

Dodge Ball

Dodge Ball from Robot Perspective

Visualize Hidden Activation
Maps in ConvLSTM

Visualize Cell State Activation
Maps in ConvLSTM

RNNs and Robotics

Goal

Utilize slip for dexterous in-hand
manipulation of grasped objects

Solution

Predictive RNN model that
estimates future poses of grasped
object from past experiences

Static tactile
data (s)

Dynamic tactile
data (d)

Predicted future
poses for the
next 20 time-
steps

Ground truth
captured by
accelerometer[Source] https://simonstepputtis.com/static/paper/icra2018.pdf

https://simonstepputtis.com/static/paper/icra2018.pdf

RNNs and Robotics

Play Video

https://www.youtube.com/watch?v=pkZohcmZFT8&t=2s

Summary

● We introduced recurrent networks

● Most widely used are LSTMs and GRUs

● Critical for tasks that require memory

● Robot may take past states into account during
decision-making

● ConvolutionalLSTMs can be used to extract visual
features and track them over time

Development Team

● The “Robot Learning” material was developed by

Trevor Barron Trevor Richardson Nambi Srivatsav

The development of this course was supported by
an Intel AI Academy grant. We thank the sponsor
for the continuing support of open-source efforts
in research and education.

