
Reinforcement Learning

Reinforcement Learning

Agent Environment

Action

Reward

Next State

Example: Balancing

● Our robot needs to learn critical control routines

● In particular, balancing on the uniwheel

● Control problem

Learning Balancing Policies

State of the System
Action to execute
Policy linking states to actions

θ

p

State:

Action:
= Force

Policy:

What are Policies?

●A policy is a function that returns an action given
a state

●In a Q-learning setup may be defined as:

where is a parameter controlling exploration

●In policy gradient methods the policy directly
estimates the action:

where encodes a distribution over actions.

Sampling from a Policy

●Given some policy we can interact with the
environment.

●This results in a set of visited states, their
corresponding rewards, and the actions that took
the agent there.

●This sequence is a trajectory or policy rollout.

Policy

State, RewardAction ~ π(state)
Environment

Approximating a Policy

● When the state or action spaces are large approximations are
necessary.

● In discrete spaces with actions:

The parameters are estimated from the current state. In
practice, this means actions are sampled from a softmax
output.

● In continuous action spaces:

Estimate the mean (and sometimes variance) of a continuous
distribution, often Gaussian.

Example for a Discrete Policy

● These estimates may be performed by any function
approximator, including linear models or a neural
network.

● Concretely, if we employ a linear model in an
environment with discrete actions:

where are model parameters and is a state.

● A policy parameterized by will generally be written,
 and represents the probability distribution over
actions given the parameters.

Policy Gradient Intuition

● Increase the probability of trajectories that give
good returns.

+

-

-
Trajectories

Reward space

Policy Gradient Overview

1)Sample data from policy,

2)Compute the probability of the samples given the
policy

3)Determine the “goodness” of sequence

4)Update the policy to increase the probability of
good trajectories

The Policy Gradient In Detail

●Let be a trajectory under policy with parameters

●From the Markov assumption follows, that

is the probability of the trajectory and is a
measure of its “goodness.”

●We can define an objective,

and peform gradient ascent on this objective

The Policy Gradient In Detail

The objective is the expected return from the policy:

The Policy Gradient In Detail

Find the gradient of the policy w.r.t. its parameters,

The Policy Gradient In Detail

This is progress, but let’s examine the gradient term further.

The Policy Gradient In Detail

Distribution of policy
How good was
visiting this state?

Gradient direction to increase
likelihood of

In more detail

Approximating the Gradient

Approximate this expected value by sampling from the policy,

Note there is no need to know the environment dynamics as

drops out when taking the gradient because it doesn’t depend on the parameters!

How should the “goodness” of a state
be defined?

● Attempt 1: The simplest method is to simply use
the discounted return received from that state.

● Demo1: Vanilla Policy Gradient. This works! But
not sample efficient.

REINFORCE, Williams ‘92

Vanilla Policy Gradient

Cartpole Task

Simple Policy Gradient in Practice:
Defining the Policy

class Policy(nn.Module):

def __init__(self):
super(Policy, self).__init__()
self.fc1 = nn.Linear(input_dim, hidden_dim)
self.fc2 = nn.Linear(hidden_dim, n_actions)

def forward(self, state):
x = F.tanh(self.fc1(state))
x = self.fc2(x)
return x

def act(state):
x = self(state)
probs = F.softmax(x, dim=1)
log_probs = F.log_softmax(x, dim=1)
sample from probs, keep track of log prob
a = probs.multinomial()
log_prob_a_s = log_probs[a]
return action and its log probability given the policy
return a, log_prob_a_s

Simple Policy Gradient in Practice:
Computing the Gradient

REINFORCE, Williams ‘92

def compute_policy_gradient(actions, logps, rewards, gamma=0.99):
compute vanilla policy gradient
assume given actions, log probabilities logps, rewards
gamma is the discount factor
first compute returns
returns = [0]*len(actions)
returns[-1] = rewards[-1]
for i in reversed(range(len(actions))-1):

returns[i] = rewards[i] + gamma * returns[i+1]

now compute gradient
grad = torch.mean([logps[i] * returns[i] for i in range(len(actions))])

in PyTorch var.backward() does backpropagation
grad.backward()

How should the “goodness” of a state
be defined?

● Attempt 2: Reduce variance by learning a value estimate,
and use advantage estimate.

The value function estimates the expected
discounted return from state while acting under
policy

The advantage function estimates the
difference between executing action in state , the
 -function, and behaving under policy .

 is estimated from the trajectory rollout.

Generalized Advantage Estimation, J. Schulman 2015

How should the “goodness” of a state
be defined?

● Estimate from the trajectory rollout. Which is
better?

● Use generalized advantage estimate that interpolate
between 1-step and infinite-step returns.

Generalized Advantage Estimation, J. Schulman 2015

Generalized Advantage Estimation

● is exponentially weighted average of
 through .

● where are the

discount and exponential GAE parameters,
respectively.

Generalized Advantage Estimation, J. Schulman 2015

Advantage Actor Critic with GAE

● Demo 2: Advantage Actor Critic. This is better! But
still not particularly sample efficient.

Asynchronous Methods for Deep RL, V. Mnih 2016

Cartpole Task

Random Policy

Play Video

https://www.youtube.com/watch?v=5ubLc6ZIFl4

Advantage Actor Critic Demo

Play Video

https://www.youtube.com/watch?v=Uk1PBRO6cM4

Advantage Actor Critic in Practice:
Now we need a value estimate

class ValueFunction(nn.Module):

def __init__(self):
super(ValueFunction, self).__init__()
self.fc1 = nn.Linear(input_dim, hidden_dim)
self.fc2 = nn.Linear(hidden_dim, 1)

def forward(self, state):
x = F.tanh(self.fc1(state))
v = self.fc2(x)
return v

def fit_value_function(vfn, loss_fn, states, returns):
given value estimate and inputs / targets
loss_fn can be nn.MSELoss for example
fit by regression techniques
loss = 0
for i in range(len(states)):

loss += loss_fn(vfn(states[i]), returns[i])
loss.backward()

Advantage Actor Critic in Practice

def compute_generalized_adv_estim(rewards, values, gamma=0.99, tau=0.95):
gae = [0]*len(rewards)
return = values[-1] # initialize to last value
for I in reversed(range(len(rewards)-1)):

return = rewards[i] + gamma * return
delta = -values[i] + return
gae[i] = gamma * tau * delta

def compute_policy_gradient(states, actions, rewards):
values = value_fn(states)
gae = compute_generalized_adv_estim(rewards, values)
compute advantage actor critic gradient
grad = torch.mean([logps[i] * gae[i] for i in range(len(actions))])

in PyTorch var.backward() does backpropagation
grad.backward()

Can we still do better?

● RL approaches tend to be unstable

● Problem: One poor update may lead to divergence

● Fix: improve gradient and bound the update step

● Examples: Natural Gradient / Trust Region Methods

● Intuition:

Probability space movement in KL divergence

Parameter space movement in Euclidean distance

How far should one step in a given direction?

Natural Policy Gradient

● Transform gradient such that movement in
parameter space is adjusted for desired
movement in probability space

● Use Fisher matrix to approximate local changes in
probability distribution given the current
parameters.

● Again, estimate by sampling:

● Transform gradient by

Natural Policy Gradient, Kakade 2002
Natural Actor Critic, Peters 2008
Trust Region Policy Opt, Schulman 2015
Actor Critic using Kronecker-Factored Trust Region, Wu 2017

What about exploration?

● In value-based methods off-policy -greedy
exploration is common.

● PG methods rely on on-policy sampling from the
distribution

Example Application

● Python code implementing the above examples
can be found in folder “Reinforcement”

● The README includes instructions on learning and
testing a model

End-To-End Reinforcement Learning

End-to-end Learning

● Some tasks are naturally formed as a mapping
from an image to an action

● For example: Atari games or many robotics tasks

● Input = image → output = controls

● Use a neural network to process input image

● ANN infers state variables from image

Atari screen ANN Controls

Back to Balancing

State of the System
Action to execute
Policy linking states to actions

θ

p

State:

Action:
= Force

Policy:

= (Image)

Deep Reinforcement Learning for E2E

● The code is the same! Just change the model and
the inputs.

● Computes derivatives for all weights in the model
by backpropagation.

● Preserve the Markov property: often stack multiple
frames in order to infer velocities.

Deep RL in Practice

● Solving the cart pole task from images:

Action

Sampling

State

Conv Conv Linear Linear

Deep RL in Practice: Defining the Policy
class Policy(nn.Module):

def __init__(self):
super(Policy, self).__init__()

 self.conv1 = nn.Conv2d(3, 16, kernel_size=5, stride=2)
 self.conv2 = nn.Conv2d(16, 32, kernel_size=5, stride=2)
 self.conv3 = nn.Conv2d(32, 32, kernel_size=5, stride=2)
 self.head_a = nn.Linear(448, 2)
 self.head_v = nn.Linear(448, 1)

def forward(self, x):
x = F.relu(self.conv1(x))

 x = F.relu(self.conv2(x))
x = F.relu(self.conv3(x))
v = self.head_v(x.view(x.size(0), -1))
x = self.head_a(x.view(x.size(0), -1))
return x, v

def act(state):
x, v = self(state)
probs = F.softmax(x, dim=1)
log_probs = F.log_softmax(x, dim=1)
sample from probs, keep track of log prob
a = probs.multinomial()
log_prob_a_s = log_probs[a]
return action and its log probability given the policy
return a, v, log_prob_a_s

Three convolutions and
a linear layer for actions
and values

Deep Advantage Actor Critic

● Demo 3: Advantage Actor Critic with neural
network function approximator.

Cartpole Task

Advantage Actor Critic Demo

Play Video

https://youtu.be/_SGAuNx1ItY

Example Application

● Python code implementing the above examples
can be found in folder “Reinforcement”

● The README includes instructions on learning and
testing a model

Next Steps: Intel RL Coach

● Intel Reinforcement Learning Coach

● Implements a variety of state-of-the-art methods

● Uses the processing power of multi-core CPUs to
enables efficient training of RL agents.

Intel Reinforcement Learning Coach

● Provides a range of benchmark scenarios

● Uses Intel-optimized TensorFlow for computations

● Humanoid control, autonomous driving, StarCraft

Download

https://github.com/NervanaSystems/coach

Recent Successes of Policy Gradients
and Trends

● Atari / Doom (A3C)

● Simulated Robotic Control (TRPO, NPG, ACKTR, DDPG)

● Combining on- and off-policy learning

● Off policy tends to be more sample efficient but less
stable. How to combine both?

● Exploration strategies

● Can we do better than Gaussian noise?

● Intrinsic motivation approaches

●Parameter space exploration

Robot Basketball with RL

● Task: learn to get ball through hoop

● Reward function: distance to center of hoop

● Reinforcement learning on bimanual robot

Video: Robot Basketball with RL

Play Video

https://www.youtube.com/watch?v=pwY9EKafcqE

Summary

● We introduced reinforcement learning

● Learning robot control trough trial and error

● Deep networks represent the controller

● We can even go directly from visuals to contols

● End-to-end learning

The development of this course was supported by
an Intel AI Academy grant. We thank the sponsor
for the continuing support of open-source efforts
in research and education.

