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Example: Balancing

● Our robot needs to learn critical control routines

● In particular, balancing on the uniwheel

● Control problem



Learning Balancing Policies

State of the System
Action to execute
Policy linking states to actions
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p
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What are Policies?

●A policy    is a function that returns an action given 
a state 

●In a Q-learning setup    may be defined as:

where   is a parameter controlling exploration

●In policy gradient methods the policy directly 
estimates the action:

where    encodes a distribution over actions.



Sampling from a Policy

●Given some policy    we can interact with the 
environment.

●This results in a set of visited states, their 
corresponding rewards, and the actions that took 
the agent there.

●This sequence is a trajectory or policy rollout.

Policy

State, RewardAction ~ π(state)
Environment



Approximating a Policy

● When the state or action spaces are large approximations are 
necessary. 

● In discrete spaces with    actions:

The parameters are estimated from the current state. In 
practice, this means actions are sampled from a softmax 
output.

● In continuous action spaces:

Estimate the mean (and sometimes variance) of a continuous 
distribution, often Gaussian.



Example for a Discrete Policy

● These estimates may be performed by any function 
approximator, including linear models or a neural 
network.

● Concretely, if we employ a linear model in an 
environment with discrete actions:

where         are model parameters and    is a state.

● A policy parameterized by     will generally be written,        
               and represents the probability distribution over 
actions given the parameters.



Policy Gradient Intuition

● Increase the probability of trajectories that give 
good returns.

+

-

-
Trajectories

Reward space



Policy Gradient Overview

1)Sample data from policy, 

2)Compute the probability of the samples given the 
policy

3)Determine the “goodness” of sequence

4)Update the policy to increase the probability of 
good trajectories



The Policy Gradient In Detail

●Let   be a trajectory under policy   with parameters  
  

●From the Markov assumption follows, that 

 

is the probability of the trajectory and          is a 
measure of its “goodness.”

●We can define an objective,
                              
and peform gradient ascent on this objective



The Policy Gradient In Detail

The objective is the expected return from the policy:



The Policy Gradient In Detail

Find the gradient of the policy w.r.t. its parameters,



The Policy Gradient In Detail

This is progress, but let’s examine the gradient term further. 



The Policy Gradient In Detail

Distribution of policy
How good was 
visiting this state?

Gradient direction to increase 
likelihood of 



In more detail



Approximating the Gradient

Approximate this expected value by sampling from the policy,

Note there is no need to know the environment dynamics as 

drops out when taking the gradient because it doesn’t depend on the parameters! 



How should the “goodness” of a state 
be defined?

● Attempt 1: The simplest method is to simply use 
the discounted return received from that state.

● Demo1: Vanilla Policy Gradient. This works! But 
not sample efficient.

REINFORCE, Williams ‘92



Vanilla Policy Gradient

Cartpole Task



Simple Policy Gradient in Practice:
Defining the Policy

class Policy(nn.Module):

def __init__(self):
super(Policy, self).__init__()
self.fc1 = nn.Linear(input_dim, hidden_dim)
self.fc2 = nn.Linear(hidden_dim, n_actions)

def forward(self, state):
x = F.tanh(self.fc1(state))
x = self.fc2(x)
return x

def act(state):
x = self(state)
probs = F.softmax(x, dim=1)
log_probs = F.log_softmax(x, dim=1)
# sample from probs, keep track of log prob
a = probs.multinomial()
log_prob_a_s = log_probs[a]
# return action and its log probability given the policy
return a, log_prob_a_s



Simple Policy Gradient in Practice:
Computing the Gradient

REINFORCE, Williams ‘92

def compute_policy_gradient(actions, logps, rewards, gamma=0.99):
# compute vanilla policy gradient
# assume given actions, log probabilities logps, rewards
# gamma is the discount factor
# first compute returns
returns = [0]*len(actions)
returns[-1] = rewards[-1]
for i in reversed(range(len(actions))-1):

returns[i] = rewards[i] + gamma * returns[i+1]

# now compute gradient
grad = torch.mean([logps[i] * returns[i] for i in range(len(actions))]) 

# in PyTorch var.backward() does backpropagation
grad.backward()



How should the “goodness” of a state 
be defined?

● Attempt 2: Reduce variance by learning a value estimate, 
and use advantage estimate.

The value function           estimates the expected 
discounted return from state    while acting under 
policy  

The advantage function              estimates the 
difference between executing action   in state   , the     
      -function, and behaving under policy   .              

             is estimated from the trajectory rollout. 

Generalized Advantage Estimation, J. Schulman 2015



How should the “goodness” of a state 
be defined?

● Estimate             from the trajectory rollout. Which is 
better?

● Use generalized advantage estimate that interpolate 
between 1-step and infinite-step returns.

Generalized Advantage Estimation, J. Schulman 2015



Generalized Advantage Estimation

●                    is exponentially weighted average of    
    through      .

●                                     where       are the

discount and exponential GAE parameters, 
respectively.   

Generalized Advantage Estimation, J. Schulman 2015



Advantage Actor Critic with GAE

● Demo 2: Advantage Actor Critic. This is better! But 
still not particularly sample efficient.

Asynchronous Methods for Deep RL, V. Mnih 2016

Cartpole Task



Random Policy

Play Video

https://www.youtube.com/watch?v=5ubLc6ZIFl4


Advantage Actor Critic Demo

Play Video

https://www.youtube.com/watch?v=Uk1PBRO6cM4


Advantage Actor Critic in Practice:
Now we need a value estimate

class ValueFunction(nn.Module):

def __init__(self):
super(ValueFunction, self).__init__()
self.fc1 = nn.Linear(input_dim, hidden_dim)
self.fc2 = nn.Linear(hidden_dim, 1)

def forward(self, state):
x = F.tanh(self.fc1(state))
v = self.fc2(x)
return v

def fit_value_function(vfn, loss_fn, states, returns):
# given value estimate and inputs / targets
# loss_fn can be nn.MSELoss for example
# fit by regression techniques
loss = 0
for i in range(len(states)):

loss += loss_fn(vfn(states[i]), returns[i])
loss.backward()



Advantage Actor Critic in Practice 

def compute_generalized_adv_estim(rewards, values, gamma=0.99, tau=0.95):
gae = [0]*len(rewards)
return = values[-1] # initialize to last value
for I in reversed(range(len(rewards)-1)):

return = rewards[i] + gamma * return
delta = -values[i] + return
gae[i] = gamma * tau * delta

def compute_policy_gradient(states, actions, rewards):
values = value_fn(states)
gae = compute_generalized_adv_estim(rewards, values)
# compute advantage actor critic gradient
grad = torch.mean([logps[i] * gae[i] for i in range(len(actions))]) 

# in PyTorch var.backward() does backpropagation
grad.backward()



Can we still do better?

● RL approaches tend to be unstable

● Problem: One poor update may lead to divergence

● Fix: improve gradient and bound the update step

● Examples: Natural Gradient / Trust Region Methods

● Intuition:

Probability space movement in KL divergence

Parameter space movement in Euclidean distance

How far should one step in a given direction?



Natural Policy Gradient

● Transform gradient such that movement in 
parameter space is adjusted for desired 
movement in probability space

● Use Fisher matrix to approximate local changes in 
probability distribution given the current 
parameters.

● Again, estimate by sampling:

● Transform gradient by

Natural Policy Gradient, Kakade 2002
Natural Actor Critic, Peters 2008
Trust Region Policy Opt, Schulman 2015
Actor Critic using Kronecker-Factored Trust Region, Wu 2017



What about exploration?

● In value-based methods off-policy   -greedy 
exploration is common.

● PG methods rely on on-policy sampling from the 
distribution         



Example Application

● Python code implementing the above examples 
can be found in folder “Reinforcement”

● The README includes instructions on learning and 
testing a model



End-To-End Reinforcement Learning 



End-to-end Learning

● Some tasks are naturally formed as a mapping 
from an image to an action

● For example: Atari games or many robotics tasks

● Input = image → output = controls

● Use a neural network to process input image

● ANN infers state variables from image

 

Atari screen ANN Controls



Back to Balancing

State of the System
Action to execute
Policy linking states to actions

θ

p

State:

Action:
= Force

Policy:

=             (Image)



Deep Reinforcement Learning for E2E

● The code is the same! Just change the model and 
the inputs.

● Computes derivatives for all weights in the model 
by backpropagation.

● Preserve the Markov property: often stack multiple 
frames in order to infer velocities.



Deep RL in Practice

● Solving the cart pole task from images:

Action

Sampling

State

Conv Conv Linear Linear



Deep RL in Practice: Defining the Policy
class Policy(nn.Module):

def __init__(self):
super(Policy, self).__init__()

       self.conv1 = nn.Conv2d(3, 16, kernel_size=5, stride=2)
       self.conv2 = nn.Conv2d(16, 32, kernel_size=5, stride=2)
       self.conv3 = nn.Conv2d(32, 32, kernel_size=5, stride=2)
       self.head_a = nn.Linear(448, 2)
       self.head_v = nn.Linear(448, 1)

def forward(self, x):
x = F.relu(self.conv1(x))

       x = F.relu(self.conv2(x))
x = F.relu(self.conv3(x))
v = self.head_v(x.view(x.size(0), -1))
x = self.head_a(x.view(x.size(0), -1))
return x, v

def act(state):
x, v = self(state)
probs = F.softmax(x, dim=1)
log_probs = F.log_softmax(x, dim=1)
# sample from probs, keep track of log prob
a = probs.multinomial()
log_prob_a_s = log_probs[a]
# return action and its log probability given the policy
return a, v, log_prob_a_s

Three convolutions and
a linear layer for actions
and values



Deep Advantage Actor Critic

● Demo 3: Advantage Actor Critic with neural 
network function approximator. 

Cartpole Task



Advantage Actor Critic Demo

Play Video

https://youtu.be/_SGAuNx1ItY


Example Application

● Python code implementing the above examples 
can be found in folder “Reinforcement”

● The README includes instructions on learning and 
testing a model



Next Steps: Intel RL Coach

● Intel Reinforcement Learning Coach

● Implements a variety of state-of-the-art methods

● Uses the processing power of multi-core CPUs to 
enables efficient training of RL agents.



Intel Reinforcement Learning Coach

● Provides a range of benchmark scenarios

● Uses Intel-optimized TensorFlow for computations

● Humanoid control, autonomous driving, StarCraft

Download

https://github.com/NervanaSystems/coach


Recent Successes of Policy Gradients 
and Trends

● Atari / Doom (A3C)

● Simulated Robotic Control (TRPO, NPG, ACKTR, DDPG)

● Combining on- and off-policy learning

● Off policy tends to be more sample efficient but less 
stable. How to combine both?

● Exploration strategies

● Can we do better than Gaussian noise?

● Intrinsic motivation approaches

●Parameter space exploration



Robot Basketball with RL

● Task: learn to get ball through hoop

● Reward function: distance to center of hoop

● Reinforcement learning on bimanual robot



Video: Robot Basketball with RL

Play Video

https://www.youtube.com/watch?v=pwY9EKafcqE


Summary

● We introduced reinforcement learning

● Learning robot control trough trial and error

● Deep networks represent the controller

● We can even go directly from visuals to contols

● End-to-end learning
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