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AI in the Enterprise
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Learning Objectives

• Identify the steps in the data science workflow

• Identify the key roles and skill sets within the field of AI

• Describe the different ways to structure an AI team

• Identify common data science misconceptions

• Identify the components of model maintenance after deployment

You will be able to:
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Data Science Workflow

Problem Statement

Data Collection

Data Exploration 
& Preprocessing

Modeling

Validation

Decision Making 
& Deployment 

What problem are you trying to solve?

What data do you need to solve it?

How should you clean your data so your model can use it?

Build a model to solve your problem?

Did I solve the problem?

Communicate to stakeholders or put into production?
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Problem Statement

What problem are you trying to solve?

• Data scientists first need to identify the problem to solve. 

• Knowledge of the business is needed to identify impactful opportunities.

• Technical knowledge is needed to ask the right questions, and to know 

what is possible. 
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Data Collection

What data do you need to solve your problem?

• The data required to solve the problem needs to be 

identified and collected.

• Data and engineering skills are needed to collect and 

consolidate data from multiple sources.
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Data Exploration and Preprocessing

How should you clean your data so your model can use it?

• Data needs to be cleaned and processed so that it’s in a 

usable format for modeling. 

• Exploration is required to identify important elements 

within the data and to identify any data quality issues.

• Data, engineering, and statistics skills are needed to 

appropriately process the data and make inferences. 
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Modeling

What model needs to be built to solve your problem? 

• Several factors go into modeling such as complexity, 

required data, speed, and performance.

• This step requires skills in engineering, modeling, 

and statistics.
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Validation

Did the problem get sufficiently solved?

• Validation is required to ensure the original problem 

was solved. 

• Model performance needs to be accurately measured. 

• Statistics and modeling skills, as well as domain 

knowledge, are needed to make sure the results align 

with the business problem.
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Decision Making and Deployment

Communicate to stakeholders or put into production.

• A business decision needs to be made, or a product 

needs to be put into production, so the business can 

see value from the project.

• This requires domain knowledge, as well as 

communication and storytelling skills. 

• Engineering skills are needed to integrate code into 

back-end software systems.
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Data Science Skill Sets

Data science teams need a variety of skills to be successful. 

Data Munging

Statistics

Software 
Engineering

Domain 
Expertise

Modeling

Storytelling & 
Communication
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Data Science Team Skills

Communicate 
with business 

leaders

Integrate code 
into software 

systems

Communication/
Storytelling

Domain 
Expertise

Modeling

Statistics

Data Munging

Software 
Engineering

Data science teams need a variety of skills to be successful. 
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Communication, Storytelling, Domain Expertise
Understand the business needs and communicate how to address them.

• Domain expertise to understand the process 
and business problem to help their business.

• Persuade decision makers to support their idea.

• Communicate complicated concepts clearly,
and tell stories.
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Modeling and Statistics
Use data to make predictions via models, and using 
statistics to assess the validity of those predictions.

• Work with a variety of modeling techniques, 
from regression to DL.

• Use statistics to assess the performance of 
one model vs. another.

• Design experiments and perform A/B testing.
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Data Munging/Software Engineering
Transform messy data into clean, usable data, as well as 
building software systems to deploy their models.

• Raw data can be messy and unstructured.

• Data must be manipulated and stored in 
databases before it can be used.

• Models need to be deployed.





Roles have evolved that fit on different places on this spectrum.
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Roles on Data Science Teams

Product 
Manager

Statistician

Machine 
Learning 
Engineer

Research 
Scientist

Data 
Engineer

Software 
Engineering

Business 
Analyst

Communicate 
with business 

leaders

Integrate code 
into software 

systems
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Business Analysts
Business analysts interact with decision-makers.
• Create reports and provide insights.
• Create dashboards displaying key product KPIs.
• Perform analysis to determine business impact 

of a new product/feature.
• Excel*, PowerBI* and Tableau* are examples of 

tools used.

*Other names and brands may be claimed as the property of others.
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Product Managers
Product Managers get requirements from business.
• Translate business ideas into product ideas.
• Determine feasibility of solving business problems. 
• Consider impact of new product or model on key 

business metrics.
• Prioritize projects and tasks.
• Examples of tools used: Microsoft Project*, 

Trello*, and JIRA*.

*Other names and brands may be claimed as the property of others.
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Statisticians
Statisticians determine the validity of models.
• Applies statistical concepts to determine 

amount of data required.
• Explores outliers and trends.
• Determines if results are statistically significant.
• Examples of tools used: R*, SAS*, Python*.

*Other names and brands may be claimed as the property of others.



23

Machine Learning Engineers
Machine learning engineers solve problems involving large amounts of 
high-dimensional data.
• Apply machine learning techniques.
• Focused on the engineering that makes 

models accurate and fast.
• Examples of tools used: Python*, R*,

and MATLAB*.

*Other names and brands may be claimed as the property of others.
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Research Scientists
Research scientists work on problems in bleeding-
edge fields.
• Work on the toughest problems in big data and 

machine learning.
• Expert at a particular sub-discipline.
• Understand how algorithms work under the hood.
• Can be part of a separate research team, 

interfacing with data science team when 
necessary.

• Examples of tools used: Python*, MATLAB*, R*, 
C++, and Java*.

*Other names and brands may be claimed as the property of others.
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Data Engineers
Data engineers build data ingestion, storage, and 
infrastructure. 
• Databases experts.
• Know the tradeoffs between speed, reliability, 

and size. 
• Automate data cleaning.
• Build ETL (extract, transform, load) pipelines to 

make data available on a regular cadence.
• Examples of tools used: Java*, SQL, and noSQL.

*Other names and brands may be claimed as the property of others.
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Software Engineers
Software engineers are responsible for 
optimizing code and deploying. 
• Get code into production.
• Write tests to detect code breaking and bugs.
• Ensure model code is maintainable.
• Examples of tools used: Python*, Ruby*, C++,

and Java*.

*Other names and brands may be claimed as the property of others.
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Domain Expertise X X

Modeling X X X X

Statistics X X X X

Data Munging X X X X

Software Engineering X
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Data Science Organizational Structure
There are multiple ways to organize data science teams.
• Centralized teams where are all data scientists report to 

the same head.
• Distributed teams where individual data scientists work 

with a business team.
• Teams embedded within functional business units.



30

Centralized Teams
All the data scientists report to the same group head. 
• Usually within a technology or IT team.
• Pros: 

• Standardization of skills and tools
• Reduction of redundant roles
• Closer collaboration amongst scientists

• Cons: 
• Further removed from the business units
• Tendency to be more reactive to problems
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Distributed Teams
Distributed teams are where individual data scientists sit within a 
particular team within a business unit. 
• Pros:

• Closer access to the business, domain experts, and end users
• More likely to come up with solutions to immediate business 

problems
• Cons:

• Destandardization of tools and skills throughout the organization 
• Less communication and collaboration between data scientists
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Additional Team Structures
There are multiple hybrid ways to organize data science teams. 
• Some examples include:

• Full data science teams can be embedded 
within a business function.

• Data science centers of excellence can be
created for the company.
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Misconception #1: Data Science “Unicorn”

Data Scientists who are experts in all areas are called “unicorns”.
• Successful teams contain people with a diverse array of 

skillsets and backgrounds.
• Some excel at communication, while others may excel at 

statistics.
• Successful teams have experts in the three main areas: 

business, science, and engineering.
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Misconception #2: Research and Algorithms Focus
Data science teams cannot just focus on research and algorithms.

• Effective teams have mechanisms to:

• Identify problems

• Communicate findings

• Work with engineering to understand 
how to put their models into production



36

Misconception #3: Complex and Advanced Systems
The most complicated solution isn’t always the best. 

• Teams tend to be more successful when they start simple 
and then move on to more complex modeling techniques.

• Complex models may be more accurate, but are less 
interpretable, more likely to fail in unpredictable ways, and 
harder to maintain.

• Starting simple also ensures that what the team is building 
aligns with business needs.
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Misconception #4: Industry Differences
The underlying modeling and data analysis techniques 
are largely transferable between industries.

• Domain expertise is required to understand which data 
is relevant and which problems are most important to 
solve.

• The techniques used to clean data, store it, and
extract useful insights and modeling remain very 
similar.
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Misconception #5: Projects Begin Well-Defined
Data Science projects are often exploratory and 
experimental in nature.

• It may not be clear how hard the problem is to 
solve until investing time exploring the data.

• Product Managers must actively work with both 
the team and the business stakeholders to 
manage expectations.
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Misconception #6: Best Prediction Models are Best
There are more challenges involved when selecting 
a model than its predictive abilities.

• Some models may be too slow or complicated to 
include in production.

• Some models may not be interpretable, and 
would have a tough sell with decision makers.
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After Deploying a Model
Once a model is deployed, relevant teams must monitor and manage 
the model for it to be useful.

• Business Intelligence teams should build reports/dashboards 
displaying model results.

• Business teams (e.g. operations, merchandising) or customers 
should use model outputs.

• Data Science teams must update model at appropriate cadence 
(for example, monthly). 
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Business Intelligence Team

The business intelligence team monitors how model 
predictions are changing over time.

• Monitor model usage and output.

• Develop key performance indicators and
dashboards.

• Visualizations should align with the needs of the 
functional teams (for example, operations) that will
be using the model.
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Functional Business Team
Use dashboards to improve decision making.

• For example: marketing team could use churn 
model to decide when to reach out to groups of 
customers.

• For example: operations team could use model 
to predict shipping/logistics times.
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Data Science Team
Monitor model to ensure continued validity and usefulness.

• For example: changes in marketing may lead to different types of 
customers coming in the door, making the old model of customer 
behavior less accurate.

• Depending on how fast the business conditions are changing, the 
data science team should update model with appropriate frequency.

• Retraining models with new data.



45

Learning Objectives Recap
In this lesson, we worked to:

• Identify the steps in the data science workflow

• Identify the key roles and skill sets within the field of AI

• Describe the different ways to structure an AI team

• Identify common data science misconceptions

• Identify the components of model maintenance after deployment
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