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Executive Summary 

Large language models (LLMs) have enabled breakthroughs in natural language 
understanding, conversational AI, and diverse applications such as text generation 
and language translation. Additionally, large language models are massive, often 
over 100 billion parameters and growing.  A recent study published in Scientific 
American1 by Lauren Leffer articulates the challenges with large AI models, 
including scaling to small devices, accessibility when disconnected from the 
internet, as well as power consumption and environmental concerns.  This solution 
white paper describes methods to optimize large language models though 
compression techniques. The OpenVINO™ toolkit is a leading solution for 
optimizing and deploying LLMs in end-user systems and devices. Developers use 
OpenVINO™ to compress LLMs, integrate them into AI-assistant applications, and 
deploy them on edge devices or on the cloud with maximum performance.  
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Figure 1. Developer Workflow 

The OpenVINO™ Deployment Advantage 

The OpenVINO™ toolkit offers the following advantages over other LLM 

deployment solutions: 
 

▪ Small Binary Size: OpenVINO™ requires fewer dependencies and a smaller 

footprint than Hugging Face*, PyTorch*, and other machine learning 

frameworks, allowing it to have a smaller deployment footprint. 
 

▪ Speed: OpenVINO™ provides optimized inference for LLMs and is one of the 

only runtime libraries that provides a full C/C++ API for efficient LLM inference, 

suitable for high-performance, resource-optimized production environments, in 

addition to a Python* API. 
 

▪ Official Intel Support: OpenVINO™ is the official AI framework distributed by 

Intel, and it will be fully supported with patches, monthly releases, and feature 

updates from Intel engineers.  

This solution white paper explains the benefits of using OpenVINO™ for LLM 
deployment. It gives comprehensive information, examples, and code snippets 
showing how to use OpenVINO™ to compress LLMs and build text generation 
pipelines around them. It also provides examples showing how to deploy LLMs on 
OpenVINO™ Model Server or in a chatbot application. Read on to learn more about 
OpenVINO’s capabilities with LLMs.  

https://www.scientificamerican.com/article/when-it-comes-to-ai-models-bigger-isnt-always-better/
https://www.scientificamerican.com/article/when-it-comes-to-ai-models-bigger-isnt-always-better/


Solution White Paper | Optimizing Large Language Models with the OpenVINO™ Toolkit  

2 

 

 
 

A brief introduction to LLMs 
Large language models (LLMs) are massive neural networks built on transformers that excel in various language-related tasks 

like text completion, question-answering, and content summarization. They have become hugely popular with the release of 

OpenAI’s ChatGPT, an “AI assistant” centered around a state-of-the-art LLM known as GPT-4. 

 

This solution white paper focuses on causal LLMs, which are LLMs that focus on predicting the next word in a sequence and are 
the type most used for AI chatbots. 

 

Training LLMs 
LLMs are trained from an extensive repository of text data, which is usually collected by crawling web pages across the 

internet. LLMs are trained for a simple task: given a sequence of words, predict the next word in the sequence. To accomplish 

this task, the billions of parameters in the LLM’s transformer network gradually adjust during training until they can accurately 

predict the content of the text documents in the training data. Essentially, this training process compresses the entirety of 

publicly available text on the internet (> 10TB of data) into a neural network of parameters (1GB - 200GB of data). 

 

Training LLMs from scratch is an expensive process! Millions of GPU hours are required for the model to fit to the training data. 

Meta’s* Llama 2 models were trained using over 3 million GPU hours at an estimated cost of $2,000,000 USD (reference2). 

Training from scratch is typically only done by research groups in large companies. Fortunately, many trained models are 

released to the public under open-source licenses so they can be fine-tuned to a unique application. 

 

Fine-tuning LLMs 
Fine-tuning a large language model allows it to adapt its pre-trained knowledge to specific tasks. While the model may be good 

at predicting words in a document, it is not yet adapted to providing human-like responses to questions. It is only trained on 

publicly available data up to a specific cut-off date, so it may not have knowledge of current events. In the fine-tuning stage, a 

new training dataset is used that consists of a smaller number of high-quality text examples that are often hand-selected or 

generated by humans. Fine tuning aligns the model to this narrower dataset related to the target task so it can generate more 

accurate responses. 

 

For example, to convert the Llama 2 base model into a question-answering AI assistant, Meta researchers fine-tuned it using a 

dataset of about 100,000 samples of hand-picked documents or human-written responses to prompts. Similarly sized 

datasets may be used to align an LLM to provide more customized responses and improve its knowledge on specific topics. 

 

Fine-tuning a LLM requires much less resources than training an LLM from scratch. Parameter efficient fine tuning (PEFT) 

techniques such as Low Rank Adaptation (LoRA)3 and QLoRA reduce the memory requirements. With these techniques, fine-

tuning can be accomplished on a computer equipped with a high-end GPU. Fine-tuning Llama 2-7B using Hugging Face’s 

PEFT LoRA method takes about 16 hours on a single GPU and uses less than 10GB GPU memory. 

 

Current popular LLMs 
The field of generative AI research moves fast, and state-of-the-art models are released on a monthly or even weekly basis. 

Here is a list of popular open source chatbot LLMs at the time of March 2024. 

 

▪ Baichuan 2 7B (Baichuan Intelligent Technology*) 

▪ ChatGLM3 6B (Tsinghua* University) 

▪ Llama 2 family: Llama 2-7B, Llama 2-13B, and Llama 2-70B (Meta*) 

▪ Mistral 7B (Mistral* AI) 

▪ Mixtral-8x7B (Mistral AI) 

▪ Qwen 7B (Alibaba*) 

▪ StableLM 7B (Stability AI*) 

▪ Vicuna 7B (LMSYS*) 

▪ Zephyr 7B (Hugging Face) 

 

These LLMs are all supported by OpenVINO™, along with additional versions of these models with larger weights. 

 

Note: OpenAI’s* GPT-4 model, and Anthropic’s* Claude 2 model outperform all the open-source models listed above in terms 

of response accuracy and quality. However, both models are closed source and not available for fine-tuning. 

 

https://arxiv.org/abs/2307.09288
https://github.com/microsoft/LoRA
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System requirements for running LLMs 
One limitation of LLMs is their size: a 70-billion parameter model like Llama 2-70B takes around 140GB worth of space. The 

system must have enough storage space and memory to hold the model’s weights. 

 

▪ Storage requirements: The system must have enough disk space to store the model files. The total file size of LLMs can 

range from 2GB for small models to over 300GB for large models. 

 

▪ RAM requirements: The amount of RAM used during inference depends on the context length, model size, and other 

factors. As a rule of thumb, the system should have at least as much RAM as the size of the model file. If it doesn’t have 

enough RAM available to load the full model, the system may resort to using disk storage as swap space for memory, which 

will cause inference to run slowly. Or it may just crash when memory is exhausted. 

 

▪ GPU vRAM requirements (if running on GPU): The GPU must have at least as much vRAM as the size of the model file with 

sufficient memory padding for other OS tasks. 

 

Fortunately, these requirements can be significantly reduced using weight compression. Compressing the model’s weights 

from FP32 to INT8 quarters its size and converting to INT4 format leads to approximately 1/8th of its size. For example, the 

Zephyr-7B-beta model in FP32 format has a file size of 28 GB. When it is compressed to INT4 using OpenVINO™ NNCF, it 

reduces the file size to 4GB while maintaining similar accuracy. To learn more, see the Weight Compression With OpenVINO™ 

section of this document. 

 

Generally, a computer that has a mid-to-high-end processor and 16GB of RAM can safely run quantized 7B models such as 

Llama-7B or Zephyr-7B-beta. These models provide a good entry point to experiment with text generation pipelines. As 

models increase in size and number of parameters, higher-end hardware is needed to support them. 

Why use OpenVINO™ for LLMs 
OpenVINO™ provides a flexible and efficient runtime for deploying LLMs. Its advantages include deployment size, speed, 

support, flexibility, and ability to run on a variety of hardware. 

Slim Deployment 

OpenVINO™ is a self-contained package that requires fewer dependencies than Hugging Face, PyTorch, and other machine 

learning frameworks. Hugging Face and PyTorch environments require several gigabytes worth of dependencies, while 

OpenVINO™ only requires several hundred megabytes.  

 

 

Figure 2. Benefit of OpenVINO™ is its reduced footprint size compared to other frameworks 

 

The slimmer binary size and memory footprint of OpenVINO™ reduce the storage requirements for target hardware and make 

containers easier to deploy and update. Fewer dependencies mean less headache with package and version management for 

deployment environments. 

Speed 
OpenVINO™ provides optimized inference for LLMs, and it is constantly being improved for even faster performance. 

Solutions built with OpenVINO™ are as fast or faster than other third-party solutions such as the open source llama.cpp 

distribution.  

 

Most other LLM-capable runtimes rely on Python code executing through a Python interpreter. OpenVINO™ is one of the only 

runtime libraries that provides a full C/C++ API for inference with LLMs, targeted for resource-optimized production 

environments. OpenVINO™ allows LLM applications to be built and optimized for target processors using C/C++. 

 

Of course, OpenVINO™ also offers a Python API, which allows for quicker development of algorithms and programs: 

Prototype a solution in Python, and then optimize it in C++ using OpenVINO™.  
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See the OpenVINO Performance Benchmarks page for graphs showing latency and throughput of LLMs on various platforms. 

For more information on how to benchmark LLMs, see the Benchmarking LLMs and Measuring Accuracy section of this 

solution white paper.  

 

Below, we include a snapshot of benchmarking data on a few, select CPU-only and GPU Intel hardware platforms: 

 

Table 1 shows benchmark latency (milliseconds per token) and throughput (tokens per second) for three Intel processors with 

three generative AI models, chatGLM2-6b, Llama-2-7b-chat, and Mistral-7b, with FP16, INT8, and INT4 weights using 

OpenVINO version 2024.0.  

 

HW Platforms: Model Name: 

Throughput (tokens/sec) Latency (msec/token) 

Tokens Input: 1024 

Tokens Output: 128 

Beam: 1 

Tokens Input: 1024 

Tokens Output: 128 

Beam: 1 

INT4 INT8 FP32 BF16 INT4 INT8 FP32 BF16 

Intel® Core™ i9-13900K 

CPU-only 
24 Cores, Memory: 2 x 32 

GB DDR5 4800MHz 

chatGLM2-6b 9.5 7.4 2.5 N/A 104.74 134.86 405.05 N/A 

Llama-2-7b-chat 8.9 6.7 2.2 N/A 112.65 148.81 458.75 N/A 

Mistral-7b 9.4 6.3 2.0 N/A 106.24 157.95 491.22 N/A 

Intel® Xeon® Platinum 

8380 CPU-only 
40 Cores, Memory: 16 x 16 

GB DDR4 3200MHz 

chatGLM2-6b 12.6 9.2 4.7 N/A 79.25 108.13 211.30    N/A 

Llama-2-7b-chat 17.4 10.4 3.6 N/A 57.52 95.73 280.26 N/A 

Mistral-7b 12.7 7.5 3.7 N/A 78.61 133.73 267.73 N/A 

Intel® Xeon® Platinum 

8490H CPU-only 
60 Cores, Memory: 16 x 16 

GB DDR5 4800MHz 

chatGLM2-6b 31.5 23.4 N/A 15.7 31.79 42.70 N/A 63.66 

Llama-2-7b-chat 27.0 20.1 N/A 13.6 37.1 49.75 N/A 73.68 

Mistral-7b 28.2 19.2 N/A 12.7 35.43 51.95 N/A 78.85 

Table 1. Generative AI benchmarks (latency and throughput) on Intel CPU-only Processors 

 

Table 2 shows benchmark latency (milliseconds per token) for GPU-based Intel processors (both discrete and integrated 

GPU) with the three generative AI models, chatGLM2-6b, Llama-2-7b-chat, and Mistral-7b, with INT4 weights using 

OpenVINO version 2024.0.  

 

HW Platforms: Model Name: 

Throughput (tokens/sec) Latency (msec/token) 

Tokens Input: 1024 

Tokens Output: 128 

Beam: 1 

Tokens Input: 1024 

Tokens Output: 128 

Beam: 1 

INT4 INT8 FP32 INT4 INT8 FP32 

Intel® Core™ Ultra 7 Processor 

165H iGPU 

chatGLM2-6b 
Not 

measured 

Not 

measured 
4.2 

Not 

measured 
Not 

measured 240.22 

Llama-2-7b-chat 8.5 5.4 3.3 116.97 183.6 305.68 

Mistral-7b 6.0 4.3 2.5 166.45 231.75 393.34 

Intel® Data Center GPU Flex 170 

dGPU 

chatGLM2-6b 
Not 

measured 
Not 

measured 
Not 

measured 
Not 

measured 
Not 

measured 
Not 

measured 

Llama-2-7b-chat 12.0 15.3 
Not 

measured 83.57 65.31 
Not 

measured 

Mistral-7b 9.9 13.3 
Not 

measured 101.29 75.05 
Not 

measured 

Intel® Arc™ A-Series Graphics 

A770M dGPU 

chatGLM2-6b 
Not 

measured 
Not 

measured 11.8 
Not 

measured 
Not 

measured 85.09 

Llama-2-7b-chat 8.6 10.3 10.7 116.82 97.45 93.26 

Mistral-7b 6.2 7.5 7.1 162.26 132.71 141.58 

Intel® Core™ i7-1360P Processor 

iGPU 

chatGLM2-6b 
Not 

measured 
Not 

measured 4.2 
Not 

measured 
Not 

measured 240.22 

Llama-2-7b-chat 4.6 3.5 
Not 

measured 217.08 286.83 
Not 

measured 

Mistral-7b 3.2 
Not 

measured 
Not 

measured 309.56 
Not 

measured 
Not 

measured 

Table 2. Generative AI benchmarks (latency) on Intel GPU Processors 

https://docs.openvino.ai/latest/openvino_docs_performance_benchmarks.html
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Notices & Disclaimers 

Performance varies by use, configuration, and other factors. Learn more on the Performance Index site.  

Performance results are based on testing as of dates shown in configurations and may not reflect all publicly available 

updates.  See backup for configuration details.  No product or component can be absolutely secure. Your costs and results 

may vary. Intel technologies may require enabled hardware, software, or service activation. 

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries. *Other 

names and brands may be claimed as the property of others. 

For details on workloads please visit: OpenVINO™ 2024.0 FAQ Section entry #5 and Workload Parameters tab. 

 

Official Intel support 
While several open-source solutions exist for deploying LLMs in C/C++ applications, they are created from a community-

based effort and may or may not be supported over the long term. OpenVINO™ is the official AI framework distributed by Intel, 

and it will be fully supported with patches, upgrades, and feature updates from Intel engineers. Software vendors and OEMs 

building LLM applications around OpenVINO™ have access to Intel field application engineers and the Intel Developer 

Software Forums to answer questions and debug errors. 

 

OpenVINO™ is developed and maintained on a monthly release schedule. Every month, new features and patches will be 

shipped to keep OpenVINO™ up to speed with the fast-moving field of AI and LLMs. As new technology advancements occur, 

other community-developed libraries may not release patches to support those advancements.  

Flexibility 

OpenVINO™ is a flexible and efficient library for developing and deploying AI applications. OpenVINO’s flexibility makes it 

simple to import and run deep learning models from all popular frameworks. While specialized deployment solutions like 

llama.cpp only support LLMs, OpenVINO™ supports all kinds of models and architectures. This enables development of 

multimodal applications ranging from computer vision, image generation, text-to-speech, data classification, and much more. 

 

Training frameworks such as PyTorch also have great flexibility for developing and deploying deep learning models, but they 

are not as optimized and efficient as OpenVINO™. The C/C++ APIs in OpenVINO™ provide an inherent advantage over the 

Python APIs of other frameworks. OpenVINO™ allows developers to write an application once and deploy it anywhere, with 

maximum performance from hardware.  

Hardware support 

OpenVINO™ supports LLM deployment on a wide range of hardware devices, including CPUs, integrated GPUs and discrete 

GPUs. It supports ARM-based architectures as well as x86/x64 architectures. This range of hardware support enables LLMs 

to be deployed on a wide variety of targets, ranging from high-powered servers to compact edge devices.  

 

OpenVINO’s automated optimization squeezes a maximum amount of performance out of the target hardware without 

needing to reconfigure the application. On newer hardware (such as Intel® Advanced Matrix Extensions (Intel® AMX) -enabled 

products like our newer Intel® Xeon® processors), OpenVINO™ automatically selects the best data type for inference. For 

more information, see the “Optimize Inference” and “Precision Control” pages for additional information, including how INT8 

quantized models are run by default with BF16 plus INT8 mixed precision, taking full advantage of the AMX capability of 4th 

Generation Intel® Xeon® Scalable Processors. 

 

How to optimize and deploy with OpenVINO™ 
There are two options for optimizing and deploying LLMs with OpenVINO™: 

 

1. Hugging Face: Use OpenVINO™ as a backend for the Hugging Face Transformers API through the Optimum Intel 

extension. 

2. Native OpenVINO™: Use OpenVINO native APIs (Python and C++) with custom pipeline code. 

 

In both cases, the OpenVINO™ runtime is used as the backend for inference, and OpenVINO™ tools are used for model 

optimization. The main differences are in ease of use, footprint size, and customizability.  

 

The Hugging Face API is easy to learn and provides a simpler interface for the developer. It hides the complexity of model 

initialization and text generation through high-level methods and classes. However, it has more dependencies, provides 

abstractions of the text generation loop, scheduler, tokenizer, and other elements of the LLM workflow leading to less options 

for detailed customization, and cannot be ported to C/C++. 

 

https://edc.intel.com/content/www/us/en/products/performance/benchmarks/overview/
https://docs.openvino.ai/2024/about-openvino/performance-benchmarks/performance-benchmarks-faq.html
https://docs.openvino.ai/2024/openvino_docs_performance_benchmarks.html
https://docs.openvino.ai/2023.2/openvino_docs_deployment_optimization_guide_dldt_optimization_guide.html#optimize-inference
https://docs.openvino.ai/2023.2/openvino_docs_OV_UG_Precision_Control.html
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The native OpenVINO™ API requires fewer dependencies, minimizing the size of the application footprint, and can be used to 

build efficient C/C++ applications. However, it has a steeper learning curve, and it requires explicit implementation of the text 

generation loop, tokenization functions, and scheduler functions used in a typical LLM pipeline. 

Category Hugging Face* with 

Optimum Intel 

Native OpenVINO™ 

Ease of use Lower learning curve; quick to integrate  Higher learning curve; requires more effort in 

integration 

Library 

dependencies 

Many Hugging Face dependencies   Lightweight (e.g., numpy, etc.) 

Languages 

supported 

Python Python, C/C++ 

Ideal use case Ideal for Python-centric projects Best suited for high-performance, resource-

optimized production environments 

Table 3. Comparing Hugging Face and Native OpenVINO™ 

 

Hugging Face’s libraries enable experimenting with different models to build out applications.  For leveraging further 

optimizations, the model and application can be ported to OpenVINO™ using OpenVINO™ APIs.  

 

This Solution White Paper shows how to optimize and deploy LLMs using both Hugging Face and native OpenVINO™. It 

begins with a Quick Start example using Hugging Face, and then provides more details on how to load LLMs, compress them, 

and run inference. 

 

Install Dependencies 
To get started with OpenVINO™, set up a Python virtual environment for OpenVINO™ by following the OpenVINO Installation 

Instructions. 

 

Once the environment is created and activated, install Optimum Intel, OpenVINO™, NNCF and their dependencies in a Python 

environment by issuing: 

 

pip install optimum[openvino] 
 

Quick start LLM inference example 
The example below shows a quick way to get started with LLMs and see the basics of how they work. It does the following: 

 

1. It loads the zephyr-7b-beta4 LLM from Hugging Face using the Optimum Intel API, which converts it to 

OpenVINO™ Intermediate Representation (IR) format and sets OpenVINO™ as the backend for inference.  

2. It automatically compresses the model to INT8 format using OpenVINO™ NNCF by default. 

3. It loads a tokenizer for converting an input text prompt into tokens that can be understood by the model. 

4. It sets up an inference pipeline with the model and tokenizer, passes in an input prompt, and prints the resulting 

response. 

 

  

https://docs.openvino.ai/2023.2/openvino_docs_install_guides_overview.html?VERSION=v_2023_2_0&OP_SYSTEM=LINUX&DISTRIBUTION=PIP
https://docs.openvino.ai/2023.2/openvino_docs_install_guides_overview.html?VERSION=v_2023_2_0&OP_SYSTEM=LINUX&DISTRIBUTION=PIP
https://huggingface.co/HuggingFaceH4/zephyr-7b-beta
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By default, this example runs the model on CPU, but the GPU can be used instead by uncommenting the model.to(“GPU”) 

line. 

 

# Import necessary packages 
from optimum.intel import OVModelForCausalLM 
from transformers import AutoTokenizer, pipeline  
 
# Load zephyr-7b-beta model and tokenizer from Hugging Face 
model_id = "HuggingFaceH4/zephyr-7b-beta" 
model = OVModelForCausalLM.from_pretrained(model_id, export=True) 
tokenizer = AutoTokenizer.from_pretrained(model_id) 
 
# Optional: compile model to run on GPU 
#model.to("GPU") 
 
# Set up pipeline and perform inference 
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer, max_length=50) 
prompt = "My cat’s favorite foods are" 
results = pipe(prompt) 
print(results) 

 
Here’s the output from running the example. Try changing the prompt to see what other text outputs can be generated! 

 
"My cat's favorite foods are wet cat food, especially those with gravy or pate, and dry cat food 

with chicken or fish flavors. She also enjoys treats with chicken or tuna flavors." 

 

The above example hides much of the complexity involved with LLM inference behind the high-level pipeline and 

AutoTokenizer classes. These are great for setting up simple examples, but they don’t allow for much customization. Also, 

they are Python classes, so they can’t be used in C/C++ applications. Let’s dive into more details about how to create and 

customize LLM applications in OpenVINO™. 

 

Loading LLMs into OpenVINO™ 

Loading Hugging Face LLMs into OpenVINO™ 

The easiest way to use a LLM in OpenVINO™ is to load a model from the Hugging Face Hub using Optimum Intel. Models 

loaded with Optimum Intel are optimized for OpenVINO™ while being compatible with the Hugging Face Transformers API. 

The OVModelForCasualLM class takes a model name, downloads it from Hugging Face*, and initializes it as an object in 

memory. 

 

To initialize a model from Hugging Face, use the OVModelForCasualLM.from_pretrained method as shown in the snippet 

below. By setting the parameter export=True, the model is converted to OpenVINO™ IR format on the fly.  
 

from optimum.intel import OVModelForCausalLM 

model_id = "HuggingFaceH4/zephyr-7b-beta" 
model = OVModelForCausalLM.from_pretrained(model_id, export=True) 

Saving and Loading Models 

Once a model has been converted to IR format using Optimum Intel, it can be saved and exported to use in a future session or 

in a deployment environment. The conversion process takes a while, so it's preferable to convert the model to IR format once, 

save it, and then load the compressed model later for faster time to first inference. 

 

To save and export a model and its tokenizer, use model.save_pretrained("your-model-name") and 

tokenizer.save_pretrained(“your-model-name”) as shown in the snippet below. 

 

# Save model for faster loading later 
model.save_pretrained("zephyr-7b-beta-ov") 
tokenizer.save_pretrained("zephyr-7b-beta-ov") 
 
The model will be exported in OpenVINO™ IR format (openvino_model.bin, openvino_model.xml) and saved to a new 

folder in the specified directory. The tokenizer will also be saved to the directory. 

https://huggingface.co/models?pipeline_tag=text-generation&sort=trending
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To load the model and tokenizer in a future session, use OVModelForCausalLM.from_pretrained("your-model-name") 

and AutoTokenizer.from_pretrained("your-model-name")as shown in the snippet below.  

 

# Load a saved model 
model = OVModelForCausalLM.from_pretrained("zephyr-7b-beta-ov") 
tokenizer = AutoTokenizer.from_pretrained("zephyr-7b-beta-ov") 
 

Converting a Hugging Face Model to OpenVINO™ IR using CLI 

Another way to convert models from Hugging Face to OpenVINO™ IR format is using the  

optimum-cli tool. This is helpful for converting models without using a Python script. 

 

The command to perform this conversion is structured as follows: 

 

optimum-cli export openvino --model <MODEL_NAME> <NEW_MODEL_NAME> 
 

--model <MODEL_NAME>: This part of the command specifies the name of the mode to be converted. Replace 
<MODEL_NAME> with the actual model name from Hugging Face. 

<NEW_MODEL_NAME>: Here, you specify the name you want to give to the new model in the OpenVINO™ IR format. Replace 

<NEW_MODEL_NAME> with your desired name. 

 

For example, to convert the Llama 2-7B model from Hugging Face (formally named as meta-llama/Llama-2-7b-chat-hf) 

to an OpenVINO™ IR model and name it "ov_llama_2", use the following command: 

 

optimum-cli export openvino --model meta-llama/Llama-2-7b-chat-hf ov_llama_2 

 

In this example, meta-llama/Llama-2-7b-chat-hf is the Hugging Face model name, and ov_llama_2 is the new name for the 

converted OpenVINO™ IR model. 

 

Additionally, you can specify the --weight-format argument to apply 8-bit or 4-bit weight quantization when exporting your 

model with the CLI. An example command applying 8-bit quantization to the model gpt2 is below: 

 

optimum-cli export openvino --model gpt2 --weight-format int8 ov_gpt2_model 
 

Special Case: Loading models tuned with LoRa 

Low-rank adaptation (LoRA) is a popular method to tune generative AI models to a downstream task or custom data. With 

LoRA, smaller representations of the model weights (called weight adapters) are trained to adapt to new data without needing 

to adjust the entire model. To learn more about LoRA, see the LoRA article5 from Hugging Face. 

 

Models that have been fine-tuned using LoRA require a few extra steps when being loaded. The trained weight adapters 

(which are produced during LoRA training) must be merged into the baseline model using the merge_and_unload() function 

before the model is used for inference. For example: 

 
model_id = "meta-llama/Llama-2-7b-chat-hf" 
lora_adaptor = "./lora_adaptor" 
model = AutoModelForCausalLM.from_pretrained(model_id, use_cache=True) 
model = PeftModelForCausalLM.from_pretrained(model, lora_adaptor) 
model.merge_and_unload() 
model.get_base_model().save_pretrained("fused_lora_model") 
 

Now the model can be converted to OpenVINO™ using the Optimum Intel API or CLI options mentioned above.  

 

  

https://huggingface.co/docs/peft/conceptual_guides/lora
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Weight compression with OpenVINO™ 
Weight compression is a technique for reducing the size of LLMs. It significantly reduces the memory required to store the 

model’s weights during inference, thereby reducing the amount of system RAM or vRAM needed to run the model. The 

OpenVINO™ Neural Network Compression Framework (NNCF) provides tools for performing weight compression on LLMs. 

 

Unlike full model quantization, where weights and activations are quantized, weight compression in NNCF only targets the 

model's weights. This approach allows the activations to remain as floating-point numbers, preserving most of the model's 

accuracy. It's a subtle yet important difference that ensures the accuracy of the model is maintained while improving its speed 

and reducing its size. The reduction in size is especially noticeable with larger models. For instance, the Llama-2 7B model can 

be reduced from about 25GB to 4GB using 4-bit weight compression.  

 

Weight compression should be performed offline rather than in a real-time application. The LLM can be compressed and 

exported in a development environment and then used in a deployment environment. 

Benefits of weight compression 

LLMs and other models that require extensive memory to store the weights during inference can benefit from weight 

compression in the following ways: 

 

▪ Enables inference of exceptionally large models that cannot otherwise be accommodated in the device memory 

 

▪ Reduces storage and memory overhead by implementing model weight compression, making models more lightweight 

and less resource intensive for deployment 

 

▪ Improves inference speed by reducing the latency of memory access when calculating outputs of each layer (the weights 

are smaller and thus faster to load from memory) 

 

▪ Unlike full quantization, weight compression does not require sample data to calibrate the range of activation values, so it is 

easier to perform 

Weight compression data types 

NNCF supports three types of LLM weight compression: 

 

▪ INT8: 8-bit weight quantization 

▪ INT4_SYM: 4-bit symmetric weight quantization 

▪ NT4_ASYM: 4-bit asymmetric weight quantization 

 

The following sections explain the differences between each option. 

INT8 – 8-bit weight quantization 

The default compression method is the INT8 mode, which compresses weights to an 8-bit integer data type. This mode offers 

a balance between model size reduction and maintaining accuracy, making it a versatile option for a broad range of 

applications. It significantly reduces the model size compared to higher-bit formats while ensuring that the accuracy of the 

model remains similar. This makes INT8 an ideal starting point for many models. 

INT4_SYM - 4-bit symmetric weight quantization 

INT4 symmetric mode involves quantizing weights to an unsigned 4-bit integer symmetrically around a fixed zero point of 8 

(i.e., the midpoint between 0 and 15). Inference with a model compressed using this mode is faster than a model with INT8 

precision, making it ideal for situations where speed is prioritized over accuracy. Although it may lead to some degradation in 

accuracy, it is well-suited for models where this trade-off is an acceptable exchange for a noticeable gain in speed and 

reduction in size. 

INT4_ASYM - 4-bit asymmetric weight quantization 

INT4 asymmetric mode also quantizes weights to unsigned 4-bit integers but does so asymmetrically with a non-fixed zero 

point. This mode slightly compromises speed in favor of better accuracy compared to the symmetric mode. This mode is 

useful when minimal accuracy loss is crucial, but a faster performance than INT8 is desired. 

  

https://github.com/openvinotoolkit/nncf
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Comparison table 

Table 4 summarizes the benefits and trade-offs for each compression type in terms of memory reduction, speed gain, and 

accuracy loss. 

 Memory Reduction Latency Improvement Accuracy Loss 

INT8 Low Medium Low 

INT4 Symmetric High High High 

INT4 Asymmetric High Medium Medium 

Table 4. Comparing compression types 

 

Performing weight compression with Optimum Intel 
The example below shows how to perform weight compression on a model from Hugging Face. In the example, a Zephyr-7B-

beta model is loaded from Hugging Face using Optimum Intel. When the model is loaded, it is automatically compressed to the 

specified compression type using NNCF.  

 

The compression type is specified in the OVModelForCausalLM.from_pretrained method using the 

compression_option="<option>" argument. When this option is set to none, INT8 weight compression will by enabled by 

default for decoder models with more than 1B parameters. It accepts any of the following options: 

 

▪ "int8" : INT8 compression using NNCF 

▪ "int4_sym_g128" : Symmetric INT4 compression with group size of 128 

▪ "int4_asym_g128" : Asymmetric INT4 compression with group size of 128 

▪ "int4_sym_g64" : Symmetric INT4 compression with group size of 64 

▪ "int4_asym_g64" : Asymmetric INT4 compression with group size of 64 

 

For more information on group size, see the Weight Compression page in OpenVINO™ documentation. In this example, 

compression_option="int8" is used to indicate INT8 quantization should be performed. 

 

from nncf import compress_weights, CompressWeightsMode 
from optimum.intel.openvino import OVModelForCausalLM 
from transformers import AutoTokenizer, pipeline 
 

# Load model from Hugging Face and compress to INT8 
model_id = HuggingFaceH4/zephyr-7b-beta" 
model = OVModelForCausalLM.from_pretrained(model_id, export=True, compression_option="int8") 
 
# Inference 
tokenizer = AutoTokenizer.from_pretrained(model_id) 

pipe = pipeline("text-generation", model=model, tokenizer=tokenizer) 
phrase = "The weather is" 
results = pipe(phrase) 

print(results) 
 
# Save compressed model and tokenizer for later use 
model.save_pretrained("zephyr-7b-beta-int8-sym-ov") 
tokenizer.save_pretrained("zephyr-7b-beta-int8-sym-ov")   

 

Note at the end of the example, the compressed model and its tokenizer are saved so they can be imported for use in a future 

session. This saves the time of compressing the model whenever it is used in a new session. For more information, see the 

Saving and Loading Models section. 

 

  

https://docs.openvino.ai/2023.2/weight_compression.html
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Performing weight compression with Neural Network Compression Framework (NNCF) 
The example below shows how to perform weight compression on an OpenVINO™ IR model using NNCF. In the example, a 

model in OpenVINO™ IR format is read using ov.core.read_model. The nncf.compress_weights method is used to 

quantize the model weights to the specified data type. 

 

The compression type used by the nncf.compress_weights method is set using the mode argument, which accepts one of 

the three following options: 

▪ mode=CompressWeightsMode.INT8 
▪ mode=CompressWeightsMode.INT4_SYM 
▪ mode=CompressWeightsMode.INT4_ASYM 
In this example, the INT4_SYM mode is set to use 4-bit symmetric quantization. 

 

from nncf import compress_weights, CompressWeightsMode 
import openvino as ov 
 
# Read an OpenVINO IR model 
core = ov.Core() 
model = core.read_model("model.xml") 
 
# Compress to INT4 Symmetric 
model = compress_weights(model, mode=CompressWeightsMode.INT4_SYM) 
 
# Save compressed model for later use 
ov.save_model(model, "model-int4-sym.xml")  
 

NNCF also allows for configuring the group_size and ratio compression parameters, which can be used to tweak the size 

and inference speed of the compressed model. For more information on these parameters, see the Weight Compression page 

in OpenVINO™ documentation.  

 

LLM inference with OpenVINO™ 
At the core of a text generation application such as a chat bot, a LLM runs inference on a set of inputs to produce a set of 

outputs. The inputs, in this case, are a sequence of words that have been converted to tokens. The outputs are a set of 

candidate tokens and their probability of being the next token in the sequence. The application selects the best candidate 

token and appends it to the input sequence. This process repeats in a loop until a maximum sequence length is reached or an 

“end of sequence” token is generated, and the resulting sequence is detokenized and displayed to the user. 

 

 

 
Figure 3. To generate text, LLM predicts the next best word in the input sequence, appends it to the input, and repeats the 

process until an “end of sequence” token is generated. 

 

 

  

https://docs.google.com/document/u/0/d/1yTXbRFRHKQD-6mfI3c_9Bv4RUFGv_8Aj/edit
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The token generation inference loop is one stage of a text generation application. The other stages are loading the model, 

tokenizing the input text, and processing the output tokens to be displayed to the user. The four stages are listed in order 

below: 

 

1. Load model 

2. Tokenize input text 

3. Execute inference loop 

4. Process output tokens 

 

These stages look very different depending on if Hugging Face or the native OpenVINO™ API is used for implementation. This 

section of the Solution White Paper shows how to implement LLM text generation using both approaches. 

 

Inference with Hugging Face and Optimum Intel 
Hugging Face’s high-level Transformers API provides a simple option for initializing the model and running inference. It is 

wrapped with the Optimum Intel extension, which converts the LLM to OpenVINO™ IR format and sets OpenVINO™ runtime 

as the backend.  

 

Shown below is the Quick Start example given earlier in this document that uses Hugging Face Transformers and Optimum 

Intel to set up and run a simple text generation pipeline.  

 
Figure 4. A basic text generation example using Hugging Face Transformers and Optimum Intel. 

 
 

In the example, three key classes and methods are used: 

 

▪ OVModelForCausalLM.from_pretrained from Optimum Intel: Loads the LLM from Hugging Face, converts it to 

OpenVINO™ IR format, and compiles it on a target device using OpenVINO™ as the inference backend 

 

▪ AutoTokenizer from Hugging Face Transformers: Initializes a text tokenizer for the LLM 

 

▪ Pipeline from Hugging Face Transformers: Handles the bulk of text generation, including tokenizing the inputs, 

executing the inference loop, and processing the outputs 

 

 

These classes provide a simple interface for setting up text generation. Each class and method has more parameters that can 

be used to further configure the model or the text generation process. The Transformers API also has other features that give 

more control over inference parameters, such as the model.generate() method. To learn more, visit the Hugging Face 

Transformers documentation6 page. 

 

  

https://huggingface.co/docs/transformers/index
https://huggingface.co/docs/transformers/index
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There are two options to select which device (CPU, iGPU, GPU, etc) the LLM is compiled on: 

 

1. Specify the device parameter in the .from_pretrained() call. For example, use 

OVModelForCausalLM.from_pretrained (model_id, export=True, device=”GPU.0”)to run the model on the 

GPU. See the Device Query documentation for more information on how target devices are named and enumerated. 

2. Use the model.to method after the model has been loaded and pass in the name of the target device. For example, use 

model.to(“GPU.0”) to run the model on the GPU.  

 

While the Hugging Face APIs greatly simplify the code for implementing text generation, one drawback is that they cannot be 

implemented in C/C++. In contrast, the native OpenVINO™ API supports building solutions with C/C++. 

 

Inference with Native OpenVINO™ API in Python 
Inference can also be run on LLMs using the native OpenVINO™ API. An inference pipeline for a text generation LLM can be 

set up in the following stages: 

 

1. Read and compile the model 

2. Tokenize text and set model inputs 

3. Run token generation loop 

4. De-tokenize outputs 

 

This section provides code snippets showing how to implement each stage with the native OpenVINO Python API. These 

snippets implement a stateful model technique to increase the memory efficiency of LLMs. With this technique, the context of 

the model, i.e. its internal states (the KV cache), are shared among multiple iterations of inference: The KV cache that belongs 

to a particular text sequence is accumulated inside the model during the generation loop. The stateful model implementation 

supports both greedy search and beam search (preview) for LLMs. This technique also reduces the memory footprint of 

LLMs, for example for being able to run INT4 models. 

Prerequisites: Install OpenVINO™ Tokenizers 

The OpenVINO Tokenizers module will be used for tokenization. It is supported on Linux, macOS, and Windows operating 

systems. An updated list of supported tokenizer types can be found in the “Supported Tokenizer Types” section of the 

OpenVINO™ Tokenizers documentation. 

 

In the same Python virtual environment that was set up in the Install Dependencies section of this Solution White Paper, install 

OpenVINO™ Tokenizers by issuing: 

 

pip install openvino-tokenizers[transformers] 
 

Convert Hugging Face Tokenizer and Model to OpenVINO™ IR Format 

Before an LLM and its tokenizer can be used with the native OpenVINO™ API, it must be converted to OpenVINO™ IR format. 

 

OpenVINO™ Tokenizer comes equipped with a CLI tool, convert_tokenizer, that converts tokenizers from the Hugging 

Face Hub to OpenVINO™ IR format: 

 

convert_tokenizer HuggingFaceH4/zephyr-7b-beta --with-detokenizer -o openvino_tokenizer 
 

The example above transforms the HuggingFaceH4/zephyr-7b-beta tokenizer from the Hugging Face Hub. The --with-
detokenizer argument tells the command to also convert the detokenizer. The -o argument specifies the name of the output 

directory where the converted objects will be saved (openvino_tokenizer, in this case). 

Next, convert the LLM itself to OpenVINO™ IR format using optimum-cli, as shown in the Converting a Hugging Face Model 

to OpenVINO™ IR Using CLI section of this document. For example, the following command is used to convert the 

HuggingFaceH4/zephyr-7b-beta model from Hugging Face to an OpenVINO™ IR model and save it in a folder named 

openvino_model: 

 

optimum-cli export openvino --model HuggingFaceH4/zephyr-7b-beta openvino_model 
 

The model and tokenizer are now saved in the openvino_model and openvino_tokenizer folders. 

Stage 1. Read and Compile Model 

https://docs.openvino.ai/2023.2/openvino_docs_OV_UG_query_api.html
https://github.com/openvinotoolkit/openvino_contrib/tree/master/modules/custom_operations/user_ie_extensions/tokenizer/python#openvino-tokenizers
https://github.com/openvinotoolkit/openvino_contrib/tree/master/modules/custom_operations/user_ie_extensions/tokenizer/python#supported-tokenizer-types
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Now that the model and tokenizer have been converted to OpenVINO™ IR format, they can be read and compiled using the 

ov.core.compile_model method. 

 

import numpy as np  

from pathlib import Path 

import openvino_tokenizers 

from openvino import compile_model, Tensor 

model_dir = Path("path/to/model/directory") 
 

# Compile the tokenizer, model, and detokenizer using OpenVINO. These files are XML 

representations of the models optimized for OpenVINO 
tokenizer = compile_model(model_dir / "openvino_tokenizer.xml") 

detokenizer = compile_model(model_dir / "openvino_detokenizer.xml") 
infer_request = compile_model(model_dir / "openvino_model.xml").create_infer_request() 

 
 

The model and tokenizer are now compiled and ready to be used for inference. 

 

Stage 2. Tokenize input text 

Input text must be tokenized and set up in the structure expected by the model before running inference. Tokenization 

converts the input text into a sequence of numbers (“tokens”), which are the format that the model can understand and 

process.  

 
Figure 5. An example phrase broken into tokens, where each token has its own numerical value. [Source] 

 
 

The compiled tokenizer can be used to convert the input text string into tokens, as shown below. 

 

text_input = [" What is OpenVINO?"] 

model_input = {name.any_name: Tensor(output) for name, output in tokenizer(text_input).items()} 

 

Stage 3. Run token generation loop 
The core of text generation lies in the inference and token selection loop. In each iteration of this loop, the model runs 

inference on the input sequence, generates and selects a new token, and appends it to the existing sequence. 

 
  

https://platform.openai.com/tokenizer
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if "position_ids" in (input.any_name for input in infer_request.model_inputs): 
    model_input["position_ids"] = np.arange(model_input["input_ids"].shape[1], dtype=np.int64)[np
.newaxis, :] 
 
# no beam search, set idx to 0 
model_input["beam_idx"] = Tensor(np.array(range(len(text_input)), dtype=np.int32)) 
 
# end of sentence token - the model signifies the end of text generation 
# for now can be obtained from the original tokenizer `original_tokenizer.eos_token_id` 
eos_token = 2 

 
tokens_result = [[]] 
 
# reset KV cache inside the model before inference 
infer_request.reset_state() 
max_infer = 10 

 
for _ in range(max_infer): 
    infer_request.start_async(model_input) 
    infer_request.wait() 

 
    # use greedy decoding to get most probable token as the model prediction 
    output_token = np.argmax(infer_request.get_output_tensor().data[:, -1, :], axis=-
1, keepdims=True) 
    tokens_result = np.hstack((tokens_result, output_token)) 

 
    if output_token[0][0] == eos_token: 
        break 
     
    # Prepare input for new inference 
    model_input["input_ids"] = output_token 
    model_input["attention_mask"] = np.hstack((model_input["attention_mask"].data, [[1]])) 
    model_input["position_ids"] = np.hstack( 
        (model_input["position_ids"].data, [[model_input["position_ids"].data.shape[-1]]]) 
    ) 
 

Stage 4. De-Tokenize outputs 

The final step in the process is de-tokenization, where the sequence of token IDs generated by the model is converted back 

into human-readable text. The compiled detokenizer is used to convert the output token IDs back into a string of text. 

 

# Decode the model output back to string 
text_result = detokenizer(tokens_result)["string_output"] 
print(f"Prompt:\n{text_input[0]}") 
print(f"Generated:\n{text_result[0]}") 
 

Here is the resulting output from running this example: 

[' <s> OpenVINO is an open-source toolkit for building and optimizing deep learning applications using Intel® hardware. It 

provides a complete'] 

 

Inference with Native OpenVINO™ API in C++ 
The previous example can also be implemented in C++, leveraging the stateful model technique. The following program (from 

OpenVINO GenAI GitHub) loads a tokenizer, a detokenizer, and a model (in OpenVINO™ IR format) to OpenVINO™. A 

prompt is tokenized and passed to the model. The model greedily generates token by token until the special end of sequence 

(EOS) token is obtained. The predicted tokens are converted to chars and printed in a streaming fashion. 

 

 

  

https://github.com/openvinotoolkit/openvino.genai/tree/fabbba5c71bcd2b33e8f06bd7d0ca9389e9ff8da/text_generation/causal_lm/cpp
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// Copyright (C) 2023-2024 Intel Corporation 

// SPDX-License-Identifier: Apache-2.0 

 

#include <openvino/openvino.hpp> 

 

namespace { 

std::pair<ov::Tensor, ov::Tensor> tokenize(ov::InferRequest& tokenizer, std::string&& prompt) { 

    constexpr size_t BATCH_SIZE = 1; 

    tokenizer.set_input_tensor(ov::Tensor{ov::element::string, {BATCH_SIZE}, &prompt}); 

    tokenizer.infer(); 

    return {tokenizer.get_tensor("input_ids"), tokenizer.get_tensor("attention_mask")}; 

} 

 

std::string detokenize(ov::InferRequest& detokenizer, std::vector<int64_t>& tokens) { 

    constexpr size_t BATCH_SIZE = 1; 

    detokenizer.set_input_tensor(ov::Tensor{ov::element::i64, {BATCH_SIZE, tokens.size()}, 

tokens.data()}); 

    detokenizer.infer(); 

    return detokenizer.get_output_tensor().data<std::string>()[0]; 

} 

 

// The following reasons require TextStreamer to keep a cache of previous tokens: 

// detokenizer removes starting ' '. For example detokenize(tokenize(" a")) == "a", 

// but detokenize(tokenize("prefix a")) == "prefix a" 

// 1 printable token may consist of 2 token ids: detokenize(incomplete_token_idx) == "�" 
struct TextStreamer { 

    ov::InferRequest detokenizer; 

    std::vector<int64_t> token_cache; 

    size_t print_len = 0; 

 

    void put(int64_t token) { 

        token_cache.push_back(token); 

        std::string text = detokenize(detokenizer, token_cache); 

        if (!text.empty() && '\n' == text.back()) { 

            // Flush the cache after the new line symbol 

            std::cout << std::string_view{text.data() + print_len, text.size() - print_len}; 

            token_cache.clear(); 

            print_len = 0; 

        } 

        if (text.size() >= 3 && text.compare(text.size() - 3, 3, "�") == 0) { 
            // Don't print incomplete text 

            return; 

        } 

        std::cout << std::string_view{text.data() + print_len, text.size() - print_len} << 

std::flush; 

        print_len = text.size(); 

    } 

 

    void end() { 

        std::string text = detokenize(detokenizer, token_cache); 

        std::cout << std::string_view{text.data() + print_len, text.size() - print_len} << '\n'; 

        token_cache.clear(); 

        print_len = 0; 

    } 

}; 

} 

 

int main(int argc, char* argv[]) try { 

    if (argc != 3) { 

        throw std::runtime_error(std::string{"Usage: "} + argv[0] + " <MODEL_DIR> '<PROMPT>'"); 

    } 

    // Compile models 

    ov::Core core; 

    core.add_extension(USER_OV_EXTENSIONS_PATH);  // USER_OV_EXTENSIONS_PATH is defined in 

CMakeLists.txt 

    // tokenizer and detokenizer work on CPU only 

    ov::InferRequest tokenizer = core.compile_model( 

        std::string{argv[1]} + "/openvino_tokenizer.xml", "CPU").create_infer_request(); 

    auto [input_ids, attention_mask] = tokenize(tokenizer, argv[2]); 

    ov::InferRequest detokenizer = core.compile_model( 



Solution White Paper | Optimizing Large Language Models with the OpenVINO™ Toolkit  

17 

 

        std::string{argv[1]} + "/openvino_detokenizer.xml", "CPU").create_infer_request(); 

    // The model can be compiled for GPU as well 

    ov::InferRequest lm = core.compile_model( 

        std::string{argv[1]} + "/openvino_model.xml", "CPU").create_infer_request(); 

    // Initialize inputs 

    lm.set_tensor("input_ids", input_ids); 

    lm.set_tensor("attention_mask", attention_mask); 

    ov::Tensor position_ids = lm.get_tensor("position_ids"); 

    position_ids.set_shape(input_ids.get_shape()); 

    std::iota(position_ids.data<int64_t>(), position_ids.data<int64_t>() + 

position_ids.get_size(), 0); 

    constexpr size_t BATCH_SIZE = 1; 

    lm.get_tensor("beam_idx").set_shape({BATCH_SIZE}); 

    lm.get_tensor("beam_idx").data<int32_t>()[0] = 0; 

    lm.infer(); 

    size_t vocab_size = lm.get_tensor("logits").get_shape().back(); 

    float* logits = lm.get_tensor("logits").data<float>() + (input_ids.get_size() - 1) * 

vocab_size; 

    int64_t out_token = std::max_element(logits, logits + vocab_size) - logits; 

 

    lm.get_tensor("input_ids").set_shape({BATCH_SIZE, 1}); 

    position_ids.set_shape({BATCH_SIZE, 1}); 

    TextStreamer text_streamer{std::move(detokenizer)}; 

    // There's no way to extract special token values from the detokenizer for now 

    constexpr int64_t SPECIAL_EOS_TOKEN = 2; 

    while (out_token != SPECIAL_EOS_TOKEN) { 

        lm.get_tensor("input_ids").data<int64_t>()[0] = out_token; 

        lm.get_tensor("attention_mask").set_shape({BATCH_SIZE, 

lm.get_tensor("attention_mask").get_shape().at(1) + 1}); 

        std::fill_n(lm.get_tensor("attention_mask").data<int64_t>(), 

lm.get_tensor("attention_mask").get_size(), 1); 

        position_ids.data<int64_t>()[0] = int64_t(lm.get_tensor("attention_mask").get_size() - 

2); 

        lm.start_async(); 

        text_streamer.put(out_token); 

        lm.wait(); 

        logits = lm.get_tensor("logits").data<float>(); 

        out_token = std::max_element(logits, logits + vocab_size) - logits; 

    } 

    text_streamer.end(); 

    // Model is stateful which means that context (kv-cache) which belongs to a particular 

    // text sequence is accumulated inside the model during the generation loop above. 

    // This context should be reset before processing the next text sequence. 

    // While it is not required to reset context in this sample as only one sequence is 

processed, 

    // it is called for education purposes: 

    lm.reset_state(); 

} catch (const std::exception& error) { 

    std::cerr << error.what() << '\n'; 

    return EXIT_FAILURE; 

} catch (...) { 

    std::cerr << "Non-exception object thrown\n"; 

    return EXIT_FAILURE; 

} 
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LLMs with OpenVINO™ Model Server 
OpenVINO™ Model Server (OVMS) is a high-performance system for serving deep learning models, making them accessible 

to software applications over standard network protocols. It allows a client application to send an inference request to the 

model server, which performs inference and sends a response back to the client. OVMS is implemented in C++ and is 

optimized for deployment on Intel architectures. OVMS supports LLMs from Hugging Face that can be converted to 

OpenVINO™ IR format.  

 

Using OVMS for LLMs can be beneficial because LLMs require a significant amount of resources to run on a local system. 

Larger models can require 140GB or more of RAM, and they take a considerable amount of processing power to run inference. 

Hosting a model on a cloud platform or dedicated server using OVMS offloads the hardware requirements from the local 

device. The application on the local device can simply send a prompt to the LLM on Model Server and receive a response back, 

while the heavy lifting occurs on the server. 

 

LLM text generation demo with OpenVINO™ Model Server 
The recently-released LLM Text Generation demo on GitHub shows how to host LLMs on OVMS and interact with them in a 

chatbot-style application. The demo serves a MediaPipe Graph with a Python* Calculator node. The node listens for inference 

requests and runs LLM inference using the Hugging Face and Optimum Intel APIs (with OpenVINO™ running as the backend).  

 

This section provides an abbreviated walk through of the demo, showing how to build the server image, mount an LLM, send it 

an inference request via a client application, and receive a streamed response back from the LLM on the server. For more 

details, see the guide on GitHub. 

Requirements 

A Linux host with Docker installed and sufficient RAM for loading the model is required for running the demo. The demo was 

tested on a host with an Intel® Xeon® Gold 6430 and an Intel® Data Center GPU Flex 170. Running the demo with small models 

like tiny-llama-1B-chat requires about 4GB of RAM. 

Build Image 

First, build the Model Server image by issuing the following commands: 

 
git clone https://github.com/openvinotoolkit/model_server.git 
cd model_server 
make python_image 
 
This creates an image called openvino/model_server:py , which can be mounted using Docker. 

Download Model 

Next, install requirements and download the model using the download_model.py script: 

 

cd demos/python_demos/llm_text_generation 
pip install -r requirements.txt 
 
python download_model.py --model tiny-llama-1b-chat 
 

This will download the tiny-llama-1b-chat model, convert it to OpenVINO™ IR format, and save the converted model in the 

./tiny-llama-1b-chat directory. The download_model.py script supports several popular LLMs. To see a full list of downloadable 

LLMs, issue: 

python download_model.py --help 

Weight Compression (Optional) 

Weight compression may be used on the model to reduce its size and memory requirements while maintaining accuracy. Use 

the compress_model.py script to perform weight compression on the tiny-llama-1B-chat model: 

 

python compress_model.py --model tiny-llama-1b-chat 
 

The script creates new directories with compressed versions of the model with FP16, INT8 and INT4 precisions. For example, 

the INT8 model files are saved in ./tiny-llama-1b-chat_INT8_compressed_weights . The compressed models can be 

used in place of the original as they have compatible inputs and outputs.  

Deploy OpenVINO™ Model Server with Python Calculator 

https://github.com/openvinotoolkit/model_server/tree/CVS-126628/demos/python_demos/llm_text_generation
https://github.com/openvinotoolkit/model_server/tree/CVS-126628/demos/python_demos/llm_text_generation
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Now the model can be deployed on Docker. The following command runs the Docker container and mounts the tiny-llama-1B-

chat INT8 model in the /model directory on the container. It also mounts the servable_stream directory, which contains 

scripts for configuring the container. 

 

docker run -d --rm -p 9000:9000 -v ${PWD}/servable_stream:/workspace -v ${PWD}/tiny-llama-1b-
chat:/model -e SELECTED_MODEL=tiny-llama-1b-chat_INT8_compressed_weights openvino/model_server:py 
--config_path /workspace/config.json --port 9000 

Run Client to Request Inference and Stream Response 

Now that the container is deployed, a local client can send an inference request to the hosted model. The client_stream.py 

script takes in an input prompt and sends it to the Model Server as an inference request. Run it using: 

 

python3 client_stream.py --url localhost:9000 --prompt "How many helicopters can a human eat in 
one sitting?" 
 

Example output (the generated text will be flushed to the console in chunks, as soon as it is available on the server): 

 

Question: 
How many helicopters can a human eat in one sitting? 
 
I don't have access to this information. However, we don't generally ask numbers from our 
clients. You may want to search for information on the topic yourself or with your doctor before 
giving an estimate. 
 
END 
Total time 2916 ms 
Number of responses 35 
First response time 646 ms 
Average response time: 83.31 ms 

More Information 

To learn more about how this demo works, visit its repository on GitHub. For more information on how to host models using 

OVMS, see the Model Server documentation. 

 

Benchmarking LLMs and Measuring Accuracy 

Benchmarking LLMs 

The OpenVINO GenAI repository contains several examples that implement text generation tasks with LLMs. One highlight of 

this repository is the LLM Benchmarking tool. The tool provides a unified approach to estimate performance for Large 

Language Models. It is based on pipelines provided by Optimum-Intel and can be used to estimate performance for PyTorch 

and OpenVINO™ models. This section walks through how to use the tool. 

Prerequisites 

Install benchmarking dependencies using requirements.txt 

pip install -r requirements.txt 
 

Note: You can specify the installed openvino version through pip install 

# e.g.  
pip install openvino==2024.0.0 

Commands to Test the Performance of one LLM 

python benchmark.py -m <model> -d <device> -r <report_csv> -f <framework> -p <prompt text> -n 
<num_iters> 
 
# e.g. 
python benchmark.py -m models/llama-2-7b-chat/pytorch/dldt/FP32 -n 2 
python benchmark.py -m models/llama-2-7b-chat/pytorch/dldt/FP32 -p "What is openvino?" -n 2 
python benchmark.py -m models/llama-2-7b-chat/pytorch/dldt/FP32 -pf prompts/llama-2-7b-
chat_l.jsonl -n 2 

https://github.com/openvinotoolkit/model_server/tree/CVS-126628/demos/python_demos/llm_text_generation
https://github.com/openvinotoolkit/openvino.genai
https://github.com/openvinotoolkit/openvino.genai/tree/master/llm_bench/python
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Command parameters: 

▪ -m - model path 

▪ -d - inference device (default=cpu) 

▪ -r - report csv 

▪ -f - framework (default=ov) 

▪ -p - interactive prompt text 

▪ -pf - path of JSONL file including interactive prompts 

▪ -n - number of benchmarking iterations, if the value greater 0, will exclude the first iteration. (default=0) 

 

python ./benchmark.py -h # for more information 

Measuring Accuracy 

The lm-evaluation-harness tool is a third-party test harness for measuring LLM accuracy. It recently added support for 

OpenVINO™. Visit the repository for more information on how to use it to measure model accuracy. 

 

OpenVINO™ Notebooks LLM Chatbot Example 
OpenVINO Notebooks are a collection of interactive examples and tutorials showcasing how to use OpenVINO™ in a variety of 

deep learning and AI-enabled applications. One popular chatbot example using LLMs is shown below. Visit the full repository 

on GitHub for more examples! 

 

Notebook link: Create a LLM-powered Chatbot using OpenVINO™ 

 

This notebook walks through the process of loading a model, compressing its weights using NNCF, and compiling it to run on a 

specific device. It provides code showing how to set up an interactive chatbot that takes in user prompts, runs inference on  

 

them, and returns a result. It shows how to use Gradio to create an interactive UI for the chatbot, as shown in the image below. 

 
Figure 6. The LLM Chatbot example shows how to build a full chatbot UI using Gradio*. 

 

One exciting feature of this example is that it can be used with a variety of open-source models, such as Llama-2-7b-chat, 

Mistral-7b, and more. This allows for trying out different models to compare their responses, and it also teaches how to 

interface with various types of models using OpenVINO™. It also supports Retrieval Augmented Generation (RAG) 

capabilities. 

  

https://github.com/EleutherAI/lm-evaluation-harness
https://github.com/openvinotoolkit/openvino_notebooks
https://github.com/openvinotoolkit/openvino_notebooks/tree/main
https://github.com/openvinotoolkit/openvino_notebooks/tree/main
https://github.com/openvinotoolkit/openvino_notebooks/tree/main/notebooks/254-llm-chatbot
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Learning Resources 
Explore the OpenVINO™ toolkit from Intel’s product page, learn and practice coding with Jupyter* Notebooks at the 

OpenVINO™ Github or Hugging Face Optimum Intel, and access the developer sandbox in the Intel® Developer Cloud. 

▪ OpenVINO™ Product Page 

▪ OpenVINO™ Github* 

o OpenVINO Notebooks 

o OpenVINO GenAI GitHub 

▪ Hugging Face* Optimum Intel 

▪ Intel® Developer Cloud 

 

Additional Support 

If you need additional support getting your solution deployed, wish to report an issue or bug to report, or have feature requests 

or require further optimizations, please contact ryan.loney@intel.com. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. When It Comes to AI Models, Bigger Isn't Always Better | Scientific American, Lauren Leffer, November 21, 2023 

2. Open Foundation and Fine Tuned Chat Models, v2 | arxiv.org, Thomas Scialom et. Al, July 19, 2023 

3. LoRA: Low-Rank Adaptation of Large Language Models | Github, Edward J. Hu et. Al 

4. HuggingFaceH4 Zerphr-7B-beta | Hugging Face, MIT 

5. LoRA Conceptual Guide | Hugging Face 

6. Hugging Face Transformers Documentation | Hugging Face 

 

Notices & Disclaimers 

Performance varies by use, configuration and other factors. Learn more on the Performance Index site.  

Performance results are based on testing as of dates shown in configurations and may not reflect all publicly available updates.  See backup for configuration details.  No product or 

component can be absolutely secure. Your costs and results may vary. Intel technologies may require enabled hardware, software or service activation. 

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries. *Other names and brands may be claimed as the property of others. 

Please Recycle  

  

https://www.intel.com/content/www/us/en/developer/tools/openvino-toolkit/overview.html
https://github.com/openvinotoolkit
https://github.com/openvinotoolkit/openvino_notebooks
https://github.com/openvinotoolkit/openvino.genai/tree/fabbba5c71bcd2b33e8f06bd7d0ca9389e9ff8da/text_generation/causal_lm/cpp
https://huggingface.co/docs/optimum/intel/index
https://www.intel.com/content/www/us/en/developer/tools/devcloud/edge/overview.html
mailto:ryan.loney@intel.com
https://www.scientificamerican.com/article/when-it-comes-to-ai-models-bigger-isnt-always-better/
https://arxiv.org/abs/2307.09288
https://github.com/microsoft/LoRA
https://huggingface.co/HuggingFaceH4/zephyr-7b-beta
https://huggingface.co/docs/peft/main/en/conceptual_guides/lora
https://huggingface.co/docs/transformers/index
https://edc.intel.com/content/www/us/en/products/performance/benchmarks/overview/
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Backup: System Configurations 

 

CPU Inference 
Engines: 

Intel® Xeon® Platinum 8380 Intel® Xeon® Platinum 8490H Core™ i9-13900K 
Intel® Core™ i7-

1360P 

Intel® Meteor Lake 
Core™ Ultra7-

165H 

Motherboard 
M50CYP2SB1U Coyote 

Pass 
Intel Corporation / Archer City 

Intel Corporation 
RNUC13RNGi90001 

NUC13ANKi7 

 
Intel Corporation 

CRB (Reef Ridge + 
Astral peak) 

CPU 
Intel®  Xeon®  Gold 8380 

CPU @ 2.30GHz 
Intel®  Xeon®  Gold 84890H CPU 

@ 1.9 GHz. 
Intel® Core™ i9-13900K 

CPU @ 3.0GHz 
Intel® Core™ i7-

1360P 

Intel® Core™ Ultra 
7-165H 

Hyper Threading on on on on on 

Turbo Setting on on on on on 

Memory 16 x 16 GB DDR4 3200MHz 16 x 16 GB DDR5 4800MHz 2 x 32 GB DDR5 4800MHz 
2 x 8 GB DDR4 

3200MHz 
2 x 16 GB DDR5 

5600MHz 

Operating System Ubuntu* 22.04.2 LTS Ubuntu* 22.04.2 LTS Ubuntu* 22.04.6 LTS Ubuntu* 22.04.3 LTS Windows 11 

Kernel version 6.2.0-39-generic 6.2.0-36-generic 6.2.0-31-generic 6.2.0-39-generic 
10.0.22631 Build 

22631 

BIOS Vendor Intel Corporation Intel Corporation Intel Corporation Intel Corporation Intel Corporation 

BIOS Version 
SE5C620.86B.01.01.0006.2

207150335 
EGSDREL1.SYS.9409.P31.2302

280828 
SBRPL579.0053.2022.112

5.0101 
ANRPL357.0027.202

3.0607.1754 

MTLPEMI1.R00.33
23.D53.231024071

2 

BIOS Release 7/15/2022 2/28/2023 11/25/2022 6/7/2023 10/24/2023 

Batch size 1 1 1 1 1 

Precision INT4/INT8/FP32/FP16 INT4/INT8/FP32/BF16 INT4/INT8/FP32/FP16 
INT4/INT8/FP32/FP1

6 
 

INT8/FP32/FP16 

Number of 
concurrent 

inference requests 
80 120 24 12 

20 

Test Date 2/9/2024 2/9/2024 2/9/2024 2/9/2024 2/27/2024 

Power 
dissipation/socket, 

TDP in Watt 

270  350  125  28  28 

CPU Price on 
2/9/2024, 

Prices may vary 

$9,359  $17,000  $599  $480  $460  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
      

 

https://ark.intel.com/content/www/us/en/ark/products/212287/intel-xeon-platinum-8380-processor-60m-cache-2-30-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/231747/intel-xeon-platinum-8490h-processor-112-5m-cache-1-90-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/230496/intel-core-i913900k-processor-36m-cache-up-to-5-80-ghz.html
https://www.intel.com/content/www/us/en/secure/care/products/232155/intel-core-i7-1360p-processor-18m-cache-up-to-5-00-ghz.html
https://www.intel.com/content/www/us/en/secure/care/products/236851/intel-core-ultra-7-processor-165h-24m-cache-up-to-5-00-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/212287/intel-xeon-platinum-8380-processor-60m-cache-2-30-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/231747/intel-xeon-platinum-8490h-processor-112-5m-cache-1-90-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/230496/intel-core-i913900k-processor-36m-cache-up-to-5-80-ghz.html
https://www.intel.com/content/www/us/en/secure/care/products/232155/intel-core-i7-1360p-processor-18m-cache-up-to-5-00-ghz.html
https://www.intel.com/content/www/us/en/secure/care/products/236851/intel-core-ultra-7-processor-165h-24m-cache-up-to-5-00-ghz.html
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GPU Inference Engines: Data Center GPU  Intel® Dedicated Graphics Family GPU 
 

GPU Flex-140 ARC™ 770M  

Connection PCIe G4, 1x16 PCIe G4, 1x16  

Batch size Automatic Automatic  

Precision FP16, INT8 FP16, INT8  
Number of concurrent inference 

requests Automatic Automatic  

Memory  12 GB DDR6, 336 GB/s 16 GB DDR6, 512 GB/s  

HPC & AI FP32, FP16, BF16, INT8, INT4 FP32, FP16, BF16, INT8, INT4  

Form Factor 3/4L Full Heigth, Passively cooled 3/4L Full Heigth, Passively cooled  

Xe cores 16 32  

EUs 256 512  

Device ID 8086-56C0 8086-5690  

Test Date 2/9/2024 2/9/2024 
 

TDP 75W  150 W   

Host Machine 
Xeon® Platinum 8490H Core™ i7-12700H, Serpent Canyon  

Motherboard Intel corp Archer City Intel corp NUC 12SNKi72 
 

CPU 
Intel® Xeon® Platinum 8490H 

CPU @ 1.90GHz 
Intel® Core™ i7-12700H CPU @ 2.30GHz 

 

Hyper Threading on on 
 

Turbo Setting on on 
 

Memory 16 x 16 GB DDR5 4800MHz 2 x 8 GB DDR4 3200MHz 
 

Operating System Ubuntu* 22.04.2 LTS Ubuntu 22.04.6 LTS 
 

Kernel version 6.2.0-36-generic 6.2.0-31-generic 
 

BIOS Vendor Intel Corporation Intel Corporation 
 

BIOS Version 
EGSDREL1.SYS.9409.P31.2302

280828 
SNADL357.0056.2022.1102.1218 

 

BIOS Release 2/28/2023 11/2/2022 
 

 

https://ark.intel.com/content/www/us/en/ark/products/230019/intel-data-center-gpu-flex-170.html
https://ark.intel.com/content/www/us/en/ark/products/230019/intel-data-center-gpu-flex-170.html

