Contents

1.0 **Introduction** .. 5
 1.1 Hardware Requirements .. 5
 1.2 Software Requirements ... 5

2.0 **Installation and Configuration** .. 5
 2.1 Enabling IOMMU .. 6
 2.2 Intel X520 Ethernet Server Adapter Driver Installation ... 6
 2.3 Hiding Virtual Functions ... 9
 2.4 Virtual Machine Installation and Configuration .. 11

3.0 **Summary** ... 15

4.0 **Customer Support** .. 15

5.0 **For Product Information** ... 16
Revision History

<table>
<thead>
<tr>
<th>Date</th>
<th>Revision</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>September 2011</td>
<td>1.0</td>
<td>Initial release</td>
</tr>
</tbody>
</table>
1.0 Introduction

Processor and platform advances, along with progress in operating systems and applications, have spurred data centers to quickly adopt 10 Gigabit Ethernet (10 GbE) as the standard for interconnects. The Intel® Ethernet Server Adapter X520 family of adapters introduces numerous industry-leading features that are helping data center administrators implement innovative solutions for difficult and challenging connectivity problems. I/O Virtualization is one of the fastest growing usage models within the data center. The X520 family of adapters provides the ability to create Virtual Functions (VFs) that are identical instantiations of the Physical Functions (PFs). VFs are capable of providing 10 GbE connectivity to Virtual Machines (VMs) within a virtualized operating system framework. This document shows how to make use of these VFs using Linux* Xen*, which is an integral part of SuSE® Enterprise Linux* Server version 11.

1.1 Hardware Requirements

- An Intel® Ethernet X520 Server Adapter
- A server platform that supports Intel® Virtualization Technology for Directed I/O (VT-d) and the PCI-SIG* Single Root I/O Virtualization and Sharing (SR-IOV) specification.
- A server platform with an available PCI Express*: X8, 5.0Gb/s (Gen2) slot

1.2 Software Requirements

- SuSE Enterprise Linux Server Version 11 or newer
- Intel® Ethernet X520 server adapter driver packages. Download the latest available Physical Function and Virtual Function drivers called "ixgbe“ and "ixgbevf" from http://sourceforge.net/projects/e1000/files.

2.0 Installation and Configuration

1. Install the Intel® Ethernet X520 server adapter in an available PCI-Express x8 slot. (Ensure that the x8 slot is electrically connected as a x8, some slots are physically x8 but electrically support only x4. Verify this with your server manufacturer or system documentation.)

2. Power up the server.

3. Enter the server’s BIOS setup and make sure the virtualization technology and Intel® VT-d features are enabled.

4. Install SuSE Enterprise Linux Server 11 (or newer) on the server.

5. Make sure all Xen modules, libraries, user tools, and utilities have been installed during the operation system installation.

6. The SuSE Enterprise Linux installation process may require a server reboot upon successful operating system install.

7. Log in to the newly-installed SuSE Enterprise Linux operating system using the "root" user account and password.
2.1 Enabling IOMMU

I/O Memory Management Unit (IOMMU) support is not enabled by default in SuSE Enterprise Linux Server 11 distributions. IOMMU support is required for a VF to function properly when assigned to a VM. The following kernel boot parameter are required to enable IOMMU support for Linux kernels:

 iommu=1

This parameter can be appended to the kernel boot entry in /boot/grub/menu.lst configuration file. See Figure 1.

![Figure 1. Appending a Parameter](image)

Reboot the server for the iommu parameter to take effect.

2.2 Intel X520 Ethernet Server Adapter Driver Installation

1. PF driver for the X520 server adapter included in SuSE Enterprise Linux Server 11 distributions doesn’t support Virtual Functions.

2. Download, uncompress, compile and install ixgbe and ixgbevf drivers.

3. The SuSE Enterprise Linux Server 11 installation does not create VF by default. The X520 server adapter supports up to 63 VFs per port. VFs can be created by using the ixgbe driver load time parameter called max_vfs. The example below (Figure 2) shows the creation of four VFs per port.

 #modprobe ixgbe max_vfs=4, 4
Warnings, errors and informational messages during ixgbe driver load are logged in the /var/log/messages file. It is good practice to review this file to confirm that the driver loaded successfully without warnings or errors.

4. Use the lspci command to confirm that the VF was successfully created. Example entry:

```
#lspci | grep 82599
```

See the following, Figure 3, for the result of this command.

Figure 3 shows four VFs per port for the X520 server adapter. Each VF is identified by an unique bus, device, and function number. In the example, the first VF is assigned Bus #15, Device #10 Function #0. VFs ending with an even function number belong to PF 0, that is port 0. VFs ending with an odd function number belong to PF 1, that is port 1.

Module options are not persistent from one boot to next. SuSE Enterprise Linux Server 11 distribution provides /etc/modprobe.conf.local file for passing parameters to various drivers during the boot process. Add the desired number of VFs that are needed so the VF can be created during server boot time. See Figure 4.
Upon successful VF creation, the Linux operating system will load the ixgbevf driver automatically. In Linux operating systems, the user can prevent a driver from loading by "blacklisting" the driver. To prevent the ixgbevf driver from loading at VF creation time, add the following entry to the modprobe.conf.local file, which is located in the /etc/ directory. See Figure 5.

```
blacklist ixgbevf
```

By default the loop driver supports a maximum of 8 loop devices. Since every xen domain uses at least two (one for the data and one for the swap) this number is insufficient. Increase number of loop devices by updating xen_loop.conf file in /etc/modprobe.d. Increase the number of devices to 128. See Figure 6 below.
2.3 Hiding Virtual Functions

SuSE Enterprise Linux Server 11 includes the Xen 4.0 open source hypervisor. Xen 4.0 requires SR-IOV-compliant Intel X520 Ethernet Adapter-based Virtual Functions (VFs) not to be claimed by the Xen Domain-0 if VFs are intended to be assigned to Virtual Machines. VF bus, device, and function numbers are required for hiding VFs from Xen Domain-0. See Figure 7.

```
pciback.hide=(15:10.0)(15:10.1) ...
```

Figure 7 shows all eight VFs that were created earlier hidden from Xen Domain-0. These VFs are intended to be assigned to various Virtual Machines later. SuSE Enterprise Linux server will need to be rebooted for these changes to take in effect.

After the server reboots successfully load the pciback driver to claim the VFs for assigning the VFs to Virtual Machines. Use the following command below to load the driver.

```
# modprobe pciback
```
Warnings, errors and informational messages during pciback driver load are logged in the /var/log/messages file. It is good practice to review this file to confirm that the driver loaded successfully without warnings or errors. These messages can also be examined using Linux dmesg utility. Figure 8 below shows dmesg output.

Use the command below to see available VFs and their identification attributes for assignment to Virtual Machine.

```bash
#xm pci-list-assignable-devices
```

Figure 9 above shows the list of VFs that are available for assignment to Virtual Machines and their respective bus, device, and function numbers.
2.4 Virtual Machine Installation and Configuration

SuSE Enterprise Linux Server 11 includes tools for creating and managing VMs. These tools offer both Command Line (CLI) and Graphical User (GUI) interfaces. Virt-Manager is a GUI tool for creating and managing VMs.

1. Use virt-manager to create a VM.

2. Install the operating system of choice on the newly created VM. For the purpose of this document, Ubuntu 11.04 32-Bit desktop Linux was installed in the VM. See Figure 10 example below:

3. SuSE Enterprise Linux Server 11 provided Virtual Manager graphical user interface doesn't properly assign PCI devices to Virtual Machine. Use the commands below to list all available Virtual Machines and to assign desired VF to a VM of choice.

   ```
   # xm list
   # xm pci-attach Ubuntu11 15:10.0
   ```
Figure 11. Listing VMs

Figure 11 above shows list of Virtual Machines configured on the server and subsequent VF assignment to Virtual Machine named "Ubuntu11".

4. Click on the icon to edit or examine VM properties.

Figure 12. VF Assignment

Figure 12 above shows the Intel X510 Ethernet Server Adapter VF (15:10.0) successfully assigned to the VM.
5. Power up the Ubuntu 11 VM. Log into the VM using the credentials created during the VM installation process.

6. Open the Linux Terminal. Use the Linux `lspci` utility to confirm that the assigned VF is shown within the VM’s PCI-Express hierarchy. See Figure 13.

![Figure 13. Confirming the VF is Assigned Correctly](image)

7. Use the Linux `lsmod` utility to confirm that the driver for the VF has loaded successfully, as shown in Figure 14.
Figure 14. Confirm that the VF has Loaded Correctly

8. Use the Linux ifconfig utility to confirm that the newly assigned VF is ready for use (Figure 15).
Figure 15. Confirm that the VF is Ready to Use

The VF can be configured for DHCP or static IP address assignment. The VF is ready to communicate once it has an IP address assigned.

3.0 Summary

Intel's best-of-breed 10 GbE solutions are now available with I/O Virtualization capabilities. Customers get world-class Ethernet support along with I/O virtualization support in mainstream Linux distributions in a single adapter.

4.0 Customer Support

Intel® Customer Support Services offers a broad selection of programs including phone support and warranty service. For more information, contact us at:

support.intel.com/support/go/network/ adapter/home.htm

(Service and availability may vary by country.)
5.0 For Product Information

To speak to a customer service representative regarding Intel products, please call:
1-800-538-3373 (U.S. and Canada) or visit

support.intel.com/support/go/network/contact.htm

for the telephone number in your area.