
 1

The Ariane 5 exploded seconds after launching. 

Intel and Floating-Point 
 
Updating One of the Industry’s Most Successful Standards  
 
The Technology Vision for the Floating-Point Standard  
 
Most people today would never expect different answers to the same mathematical 
calculation performed on different microprocessors. But before 1985, it happened all 
the time. That’s because there was no 
standard for floating-point numbers — 
the way computers handle real numbers. 

IEEE Standard 754 for Binary Floating-
point Arithmetic changed all that by 
providing a set of specifications for computers to follow. Approved in 1985, this 
standard became vitally important nearly immediately — especially when one 
considers the type of things that happen when it is disregarded. According to 
Professor William Kahan, University of California at Berkeley, a classic case occurred 
in June 1996. A satellite-lifting rocket named Ariane 5 turned cartwheels shortly 
after launch and scattered itself and a payload worth over half a billion dollars over a 
marsh in French Guiana. Kahan found the disaster could be blamed upon a 

programming language that disregarded 
the default exception-handling 
specifications in IEEE 754. Upon launch, 
sensors reported acceleration so strong 
that it caused a conversion-to-integer 
overflow in software intended for 
recalibration of the rocket’s inertial 
guidance while on the launching pad. This 
software could have been disabled upon 
rocket ignition, but leaving it enabled had 

mistakenly been deemed harmless. The software ended up triggering a system 
diagnostic that dumped its debugging data into an area of memory being used by the 
programs guiding the rocket’s motors. At the same time, control was switched to a 
backup computer that unfortunately 
had the same data. This was 
misinterpreted as necessitating strong 
corrective action and the rocket’s 
motors swiveled to the limits of their 
mountings. Disaster ensued. Had 
overflow merely obeyed the IEEE 754 
default policy, the recalibration 

Real numbers with non-recurring decimal 
representations, such as pi, are problematic for 
computers because they only have a finite 
number of bits with which to represent each 
number.  

Computers approximate real numbers using 
floating-point arithmetic. This operation  
involves some approximation or rounding 
because a number may be too long to 
represent. Floating-point arithmetic employs 
scientific notation and a "sliding window" of 
precision appropriate to the scale of the 
number. This allows it to represent numbers 
from 1,000,000,000,000 (1012 x 1.0) to 0. 
000000000001 (10-12 x 1.0) with ease.  



 2

software would have raised a flag, delivered an invalid result to be ignored by the 
motor guidance programs, and the Ariane 5 would have pursued its intended 
trajectory. 

Preventing mishaps like these was an important part of the technology vision for 
IEEE 754. Another important consideration was the ever-increasing performance 
capabilities of personal computers. Every generation of computers is much more 
powerful than the computers sold in 1976 when Intel first began to design a 
floating-point co-processor for its i8086/8 and i432 microprocessors. In the late 70s, 
the typical microprocessor was an 8-bit CPU with 40,000 transistors and an 8-bit 

bus. These microprocessors ran a few 
million instructions per second on 
programs and data that fit into a 
computer’s main memory of a megabyte 
or less. The floating-point processor was 
often an attached unit running 1 million 
floating-point operations per second 
(FLOPS).  

Fast forward to today. The average laptop computer is many times faster than the 
fastest supercomputer that existed in 1975. For that matter, the computer on your 
desk could nearly handle the processing done by all the world’s computers back then 
and still have enough capacity left over to play a computer game. An Intel® Core™ i7 
processor introduced in 2010 with six 64-bit CPUs (cores) has 1.17 billion transistors 
and at 3.3 GHz can reach up to 158.4 GFLOPs in single precision (158 · 109 floating-
point operations per second), and half that in double precision.  

With change as large as that, the 
technology vision for floating-point 
calculations merits change as well. Where 
once a floating-point program might have 
run into a problem every billion or trillion 
operations (say, every few hours or a few 
times a year), today that problem comes up 
anywhere from several times a second to 
many times an hour.  

The number of programs requiring floating-
point operations has increased dramatically 
as well. It’s not just scientific, CAD and other 
math-intensive applications. It’s also 
communications, security, graphics, and 
games. Consider a game character throwing 

Professor Kahan cites another example of 
the dangers of not abiding by IEEE 754. In 
1997, the Aegis missile-cruiser Yorktown 
spent almost three hours adrift off Cape 
Charles, Virginia. Its software-controlled 
propulsion and steering was disabled as it 
waited for its operating system to be 
rebooted after a division-by-zero error from 
a database program that had interpreted an 
accidentally blank field as zero. If the 
software had followed the IEEE standard, the 
mistake would have generated an answer of 
infinity that would have resulted in an 
unknown and an error message. Instead, the 
software tried to compute it, crashed the 
operating system, and left the ship traveling 
in a broad circle until its crew finally 
succeeded in rebooting the operating system. 
Meanwhile, the ship had no control over its 
engines, steering or weaponry. 

In binary floating-point arithmetic, a floating-
point number represents an integer or fixed-
point number multiplied by the base 2 to some 
integer power. Floating-point numbers are the 
binary analog of scientific notation in base 10.  



 3

an axe. Everything from the force with which it is thrown to its flight path and 
where it lands requires determining the physics of motion and how that object looks 
at each instant in real time as it moves across the screen. Such realistic rendering 
requires an immense amount of calculations.  Back in 2000 when IEEE 754 came up 
for renewal, it was time to look for ways to update the standard for the present day 
and the upcoming demands of tomorrow’s computing. 

Before There Ever Was a Floating-Point Standard 
Programmers of floating-point computations in the 1960s and 1970s had to cope 
with each computer brand (and often models within that brand) supporting its own 
range and precision for floating-point numbers. Each manufacturer rounded off 
arithmetic operations in their own, sometimes peculiar, way. Not only that, but some 
computers were binary and some were decimal. (A Russian computer even used 
trinary arithmetic.)  
 
Equally challenging were the peculiar ways each handled various situations that a 
particular arithmetic problem could create. For instance, with one computer, numbers 
behaving as non-zeros during comparison and addition might behave as zeros in 
multiplication and division. This was a problem because you can’t divide by zero 
(think back to your math classes.) Before a number could safely be used as a divisor 
with this computer, a programmer had to have inserted code for multiplying the 
number by 1 and then comparing to zero. If the number was equal to zero, it couldn’t 
be used. You couldn’t necessarily try this with another computer though. The same 
trick of multiplying by 1 on a different computer might lop off the last four bits and 
give a different answer.  
 
Having so many different ways of handling floating-point arithmetic created an 

anarchy that forced people to deal with individual anomalies 
in their own way. This made making reliable numerical 
software that was “portable” from one type of computer to 
another extremely expensive. A few forward thinkers began 
to realize that as microprocessors continued to proliferate, 
no one would soon be able to afford adapting a single math-
intensive application to them all. The computers, the I/O 
devices, the languages, compliers and arithmetic were so 
different from one machine to the next, that rewriting a 
program for another computer was becoming a monumental 
task that involved a great deal of debugging to make it work.  
 
 

 
 
 

Professor William Kahan 
(Circa 1975,  Photo: Peg 

Skorpinski) 



 4

Setting the Stage for the First IEEE Floating-Point Standard 
In 1976, in the midst of all these different ways of handling floating-point numbers, 
Intel began designing a floating-point co-processor for its i8086/8 and i432 
processors. Dr. John Palmer, manager of Intel's floating-point effort, persuaded the 
company it needed an internal arithmetic standard to prevent different Intel 
microprocessors from giving different mathematical results. Palmer remembered a 
professor, William Kahan, he had heard at Stanford some 10 years earlier. Kahan had 
been involved with computers since 1953, back in the days when vacuum tube 
computers had a mean time between failures of about five minutes. In the second 
half of the 60s, Kahan had worked with IBM on improving their handling of floating-
point numbers. In the 70s, Kahan had helped enhance a successful line of Hewlett-
Packard calculators. Palmer recruited Kahan as a consultant to Intel’s floating-point 
efforts.  
 
Intel began seeing excellence in floating-point arithmetic as a potential competitive 
advantage — a way to differentiate their processors from other chip manufacturers 
at the time. Intel also realized it was on the cusp of something big — the market for 
microprocessors was soon to explode and so was the opportunity to sell massive 
numbers of floating-point co-processors. Intel gave Kahan license to pursue the best 
floating-point solution possible. 
 
Kahan assembled and integrated all the best floating-point arithmetic features he 
knew of to achieve a mathematical regularity and integrity that previous solutions 
had lacked. Kahan then worked with Intel engineers on solutions for fitting all the 

necessary algebraic operations and library of 
functions into the i8087’s read-only memory 
(ROM). At first, because of the size, this 
seemed an impossible task. But Intel 
engineers in Israel developed a solution 
enabling storage of two bits per transistor 
instead of one —and thus solved a 
potentially limiting space issue. 
 
Rumors about the i8087 started circulating 
and other companies began to look at a 
standards effort as a way of keeping a level 

playing field. Professor Kahan attended one of the meetings and then requested 
permission from Intel to participate. Palmer gave Kahan the go-ahead to disclose 
most of the specifications for the i8087, but not its architecture or transcendental 
functions. (Transcendental functions are functions which "transcend," i.e., cannot be 
expressed in terms of, algebra. Examples of transcendental functions include the 
exponential function, the trigonometric functions, and the inverse functions of both.) 
 

 
Intel 8087 Floating-Point Co-Processor Die 



 5

The double precision format requires two 4-
byte storage locations in computer memory, at 
address and address+1 in order to represent a 
floating-point number. This is how computers 
with 32-bit stores (single precision) provide the 
64-bit double precision format.   

What Kahan could share included precisions, exponent ranges, special values, and 
storage formats, and the reasoning behind the decisions that had been made. For 
competitive reasons, Intel didn’t want to give away its upcoming surprise — a chip 
with only 40,000 transistors that had most of the essentials of a math library on it.   
 
The Proof is in the Performance 
Kahan collaborated with a student, Jerome Coonen, and a visiting professor, Harold 
Stone, at U.C. Berkeley on a draft specification that they submitted to the IEEE p754 
working group. It became known as the K-C-S draft. It was one of several proposals. 
Initial reaction to the K-C-S draft was that it was complicated, but had a good 
rationale for everything. Kahan, knowing that a lot of code involving floating-point 
would be written in the future by people who knew little about numerical analysis, 
wanted to make sure their programs would get the right results. His other goal was 
to ensure that the standard would enable 
people who really were expert in 
floating-point to write truly portable 
software that would work as well on one 
microprocessor as another.  
 
The selection came down to two 
proposals: Kahan’s work for Intel and an existing DEC VAX format that had a large 
installed base. Initially DEC’s format was seen as inferior because its exponent range 
was too narrow for some double precision computations. But then DEC introduced a 
proven double precision format with the same exponent range as the K-C-S draft.  
 
Attention at this point turned to another big difference: How the two floating-point 
proposals handled underflow. Underflow occurs when the result of a floating-point 
operation is smaller in magnitude (closer to zero, either positive or negative) than 
the smallest quantity representable. The DEC solution flushed underflow to zero, a 

strategy favoring performance but that had 
the troubling side effect of occasionally 
causing software to malfunction. While 
these malfunctions were rare in the 1970s, 
some of the working group was concerned 
about what would happen when computers 
became a thousand times more numerous 
and arithmetic became a thousand times 
faster.  
 
The K-C-S draft employed gradual 
underflow to reduce the risk of software 
malfunctions. This meant that subnormal 
numbers (non-zero numbers smaller than 

Underflow refers to the condition that occurs 
when a computer attempts to represent a 
number that is too small for it (that is, a 
number too close to zero). For example, if 
your computer supports a precision of 6 
digits and the exponent range allows a 
minimum of -99, then the smallest non-zero 
number it can support is 10-99 x 1.00000. If a 
calculation produces a smaller number such 
as 10-99 x 0.3, an underflow condition occurs. 
Programs respond to underflow conditions in 
different ways. Some report an error, while 
others approximate as best they can (a 
process called gradual underflow) and 
continue processing.  



 6

the smallest normal number allowed by the precision in the floating-point 
implementation) were produced that would allow a calculation to lose precision 
slowly when the result was small, rather than all at once.  
 
The argument against gradual underflow was that it would degrade performance of 
the fastest arithmetic because of the extra steps it required even if no underflows 
occurred. Intel and Kahan had already come up with a solution for implementing 
gradual underflow in hardware without delaying all floating-point operations, but 
didn’t want to reveal it. The dispute was resolved when a U.C. Berkeley graduate 
student built the K-C-S floating-point 
solution onto two accelerator boards for a 
VAX. Substituting these boards in a VAX 
and running the VAX instruction set proved 
that there were no performance sacrifices 
due to the K-C-S draft’s use of gradual 
underflow. 
 
By now, support was growing for the K-C-S draft. The main argument against it 
finally centered on the value of its gradual underflow solution for numerical 
software. This solution clearly helped prevent some software malfunctions, but did it 
really do anything for the arithmetic?  
 
To determine this, a highly respected error-analyst, Professor G.W. Stewart III from 
the University of Maryland, was commissioned in 1981 to assess the value of 
gradual underflow. He concluded it was the right course to take.  
 
The Standard’s Adoption and Success 
Despite the strong support, the movement of the K-C-S draft towards ratification 
was slow as wording changes and various small compromises delayed it. 
Nevertheless, by 1984 the draft was already being implemented in products by Intel, 
AMD, Apple, AT&T, IBM, Motorola, National Semiconductor, and others. In 1985, IEEE 
754 officially became an industry standard. 

 
Looking back, the standard has been an 
enormous success. All computers now 
conform either fully or to a large extent 
to the standard — including specialized 

chips such as DSP or graphics chips. According to one IEEE 754 revision committee 
member, it has been the “pivotal flagship example of IEEE standards and one of the 
most implemented and far-reaching of any IEEE standard.” Since 1984, more than 
1.2 billion Intel processors alone have conformed to the standard (source: IDC 
database). The standard’s influence has extended up to mainframes. Many general 
purpose computers (computers designed to perform functions required by both 

In 1989, Professor Kahan received the ACM 
Turing Award (the unofficial Nobel Prize for the 
computing industry) for his work on floating-
point and IEEE 754. 

The IEEE Standard 754-1985 for Binary 
Floating-Point Arithmetic was a nearly decade-
long effort by a 92-person working group of 
university mathematicians, computer scientists 
and engineers, computer manufacturers, and 
microprocessor companies.  



 7

sophisticated scientific and business applications) claim conformance to at least a 
large subset of the standard.  
 
Software developers have benefited 
tremendously from the standard as well. 
They can more or less take it for granted 
that when they write a program that 
works with real numbers, it will behave in 
a specific way when run on various 
microprocessors. Instead of many 
different floating-point formats, there’s just one. Instead of having to troubleshoot 
and come up with ingenious little bits of code to make answers come out right on 
each different microprocessor, everyone simply counts on IEEE 754 to ensure 
consistency. Having the standard has allowed people to move beyond trying to make 

floating-point work properly on a 
computer to basing new work on it.  
 
That said, it’s important to note that IEEE 
754 doesn’t guarantee a “right” answer, 

only a consistent one. Determining the correctness of an answer can in special cases 
require careful error analysis. What IEEE 754 does do is provide a high level of 
mathematical regularity and integrity for software that requires it. 
 
Revising the IEEE 754 Standard  
IEEE standards have about a 15-year lifespan. That means IEEE 754 was up in 2000. 
Through yearly extensions, the standard and the revision process were extended 
for a number of years.  
 
But more than simple expiration was driving the revision process. As mentioned 
early in this article, each generation of computers and their microprocessors 
drastically advance technology. Each generation is incredibly more powerful and runs 
much more sophisticated and math-intensive software — programs we don’t even 
think of math-intensive, such as games. Whereas the original Intel floating-point co-
processor required 40,000 transistors, today’s many-core processors have parallel 
single instruction multiple data (SIMD) instruction sets for floating-point, and 
dedicate around 1 million transistors per core to handling floating-point operations. 
This means a quad-core processor could have around 4 million transistors for 
floating-point operations. Despite this large number, each transistor in a floating-
point unit is carefully thought out for its contribution to performance before the 
design is replicated in each core of millions of processors. 
 
The nature of computing also has changed dramatically since 1985. Back then, the 
best one could hope for in graphics rendering for a game would be moving one large 

“The standard doesn’t provide a guarantee that 
the answers are the “right” answer. That may 
require careful error analysis. However the 
standard provides many mechanisms that make 
it easier for a program to get the “right” 
answer on conforming computers from 
different vendors.” — John Crawford, Intel 
Fellow 

“The fact that Intel presented this gift [Intel’s 
specifications for floating-point arithmetic] was 
a phenomenal act of altruism on Intel’s part.”  
— Professor William Kahan, U.C. Berkeley 



 8

or complicated object around on the screen and putting up with frequent waits for 
the image to refresh. But today, with much more powerful computers, we’re asking 
for far more. Going back to the physics of motion involved in a game character 
throwing an axe, if we do this in 32-bit calculations, small round-off errors will cause 
tiny shape changes or details in the image to come and go as the axe moves across 
the screen. Some of these will be big enough to be seen by the eye. Perform these 
calculations in 64-bit arithmetic (double precision) and the round-off errors become 
small enough that any imperfections will be too small to be seen by the human eye. 
In a growing number of cases, double precision may not be enough. For example 
supernova simulations, climate modeling, planetary orbit calculations, quantum field 
theory, and experimental mathematics require a higher level of numeric precision.1 
Such precision is generally only required in scientific computing applications where a 
very long train of computations may lead to a single result. To meet this need, quad 
precision was added to the new IEEE 754r revised floating-point standard (which 
became IEEE 754-2008 upon its adoption).  
 
To revise IEEE 754, a committee of as many of the original working group as could 
be assembled was formed. This included Professor Kahan and some of his former 
students. A number of new people in the field were included as well. The group 
started with the question “what needed to be changed,” and came up with some key 
things to consider:  
 

1. Fixing various minor ambiguities in the 1985 standard that were known only 
to a few experts. 

2. Extending the standard to cover "half precision" (also known as "Float 16," a 
16-bit storage format used for graphics and in DirectX), and "quad precision" 
(128-bit format), together with generalized formulae for some wider formats. 

3. Adding fused multiply-add.  
4. Incorporating decimal floating-

point into the standard. 
5. Improving exception handling and 

providing recommendations to 
language standard implementers. 

6. Introducing optional data types 
for supporting other fixed width 
floating-point formats, as well as arbitrary precision formats (cases where the 
precision of representation and rounding are determined at execution time) 
and the ability to specify the size of the significand. 

7. Adding transcendental functions. 
8. Making minor changes to the operations that convert floating-point numbers 

to integers and back again. 
9. Not invalidating any existing computer through a proposed change for the 

revised standard. 

In computing, a fused multiply-add (FMA) 
computes a multiply-accumulate — FMA(A, B, C) 
= AB + C — with a single rounding of floating-
point numbers. When implemented in a 
microprocessor, this is typically faster than a 
multiply operation followed by an add. FMA is 
already implemented on Intel® Itanium® and 
Itanium 2 processors.  



 9

 
This last point was particularly important. When the original standard was 
introduced, there wasn’t any standardized way to do floating-point operations. Now 
several billion computers from manufacturers all over the world use the standard. 
They can’t be changed to conform to a revised standard. For the committee, that 
meant new capabilities could be added, but not changes that would invalidate 
existing computers.  
 
Intel was prominent in the revision process. Former Intel mathematician Jeff Kidder 
was vice chair. Intel members of the committee included former Intel senior principal 
engineer Peter Tang, Intel Fellow John Crawford, senior principal engineer Roger 
Golliver, senior software engineer John Harrison, and principal engineer Marius 
Cornea.  
 
Implementation Strategies for Decimal Floating-Point Arithmetic 
IEEE 854, commonly known as the radix-independent floating-point standard, came 
out in 1987, two years after IEEE 754. While not truly radix-independent, it defined 
both binary and decimal floating-point arithmetic. Decimal arithmetic makes 
numerical calculations more human-friendly. Results will be as people expect them, 
identical to what would be obtained 
using pencil and paper. Decimal 
arithmetic also provides a robust, 
reliable framework for financial 
applications that are often subject to 
legal requirements concerning rounding 
and precision of the results in the areas 
of banking, telephone billing, tax calculation, currency conversion, insurance, or 
accounting in general. 
 
Unlike IEEE 754, IEEE 854 was never implemented or used widely. Decimal floating-
point arithmetic calculations were done just as easily (and often faster) with 
software solutions or in binary floating-point. Having a variety of software solutions 
for how people do decimal floating-point was never much of a problem because, 
through the present day, there haven’t been enough decimal arithmetic-intensive 
applications, or speed and accuracy issues, to create interest in IEEE 854.  
 
Nevertheless, the revision of IEEE 754 brought an opportunity to combine in one 
standard both binary and decimal floating-point standards. It’s expected combining 
the standards will do for decimal floating-point what IEEE 754 did for binary floating-
point — namely, get everyone on the same page in how they implement decimal 
floating-point arithmetic.   
IEEE 754-2008 defines three decimal floating-point formats with sizes of 32, 64, 
and 128 bits. Two encodings for each of these formats have been adopted: the 

Decimal (base 10) floating-point arithmetic 
provides an exact representation of displayed 
numbers and provides a precise round at the 
decimal radix point (i.e., 10 in base 10). This 
type of arithmetic is used in financial 
calculations. 



 10

decimal, or Densely Packed Decimal (DPD) encoding, and the binary, or Binary Integer 
Decimal (BID) encoding (the terms decimal encoding and binary encoding are the 
used in IEEE Std 754-2008). BID-based encoding is the best suited for software 
implementations of the decimal floating-point arithmetic and is seeing wide adoption 
from companies that make financial software and database applications.  
 
BID-based encoding may also turn out to be the best solution for hardware 
implementation as well. A 2007 paper presented at the IEEE International 
Conference on Computer Design reported that BID is particularly well suited for 
hardware implementations, since it can share hardware with binary arithmetic units.2 
The paper discussed a proposed hardware design of a BID-based floating-point adder 
and showed that it could be achieved with a modest area increase on a processor 
core. According to the paper, "over 70 percent of the BID adder’s area is due the 64-
bit fixed-point multiplier, which can be shared with a binary floating-point multiplier 
and hardware for other DFP [decimal floating-point] operations."3 
 
From a cost-effectiveness and performance standpoint, a software implementation 
offers the best solution for now. To help ensure compliance with IEEE 754-2008 
when implementing the functions defined for decimal floating-point arithmetic 
operations, Intel offers the Intel® Decimal Floating-Point Math Library. This software 
package is used as a computation engine by compilers or other tools requiring 
decimal floating-point support and provides a fast and efficient solution for financial 
calculations that cannot be carried out correctly in binary floating-point arithmetic. 
It's designed to run on any platform in Linux, Windows, HP-UX, Solaris, and OSX. 
 
What Lies Ahead 
IEEE 754-2008 was published in August 2008. Top programming languages such as 
C, C++ and Fortran will be addressing the new standard in the course of working on 
revisions of their standards in coming years.  
 
Just as the computing landscape changed dramatically from the ratification of the 
first floating-point standard, equally big changes are in store for the next 15 to 20 
years. The increasing number of cores in processors and Intel's continual innovation 
in microprocessor architecture are driving an ongoing revolution in software 
languages as software developers continue to adopt new ways, such as parallelism, 
in their applications to make use of the advancing technology. This will enable users 
to better tap the ever-greater leaps in performance (and performance per watt) 
being made in personal computers. In this new landscape, the revised IEEE floating-
point standard is a welcome update and should continue the standard's legacy as 
one of the most implemented and successful IEEE standards for years to come.  
 
The revised standard provides an opportunity for the industry to benefit from its 
improvements, new features and performance enhancements, as well as to improve 



 11

implementation of the standard in products. This will lead to greater realism in real-
time graphics, more accurate simulations, and greater precision and more consistent 
implementation of decimal floating-point arithmetic in financial calculations. 
 
Learn More 
Visit the IEEE 754: Standard for Binary Floating-Point Arithmetic Web site  

(http://grouper.ieee.org/groups/754/) 
Read: 
 “An Interview with the Old Man of Floating-Point — Reminiscences from William 

Kahan” (http://www.cs.berkeley.edu/~wkahan/ieee754status/754story.html) 
by Charles Severance. 

 “Why Do We Need a Floating-Point Arithmetic Standard?” 
(http://www.cs.berkeley.edu/~wkahan/ieee754status/why-ieee.pdf) by William 
Kahan 

 “BID — Binary-Integer Decimal Encoding for Decimal Floating-point: A Format 
Friendly to Software Emulation and Compiler Native Support” 
(http://754r.ucbtest.org/issues/decimal/bid_rationale.pdf) by Ping Tak Peter 
Tang, Software and Solutions Group, Intel Corporation 

 “A Software Implementation of the IEEE 754r Decimal Floating-Point Arithmetic 
Using the Binary Encoding Format” 
(http://www.lirmm.fr/arith18/papers/CorneaM_Decimal_ARITH18.pdf ) by 
Marius Cornea, Cristina Anderson, John Harrison, Ping Tak Peter Tang, Eric 
Schneider, and Charles Tsen 

 
 
 
 
 
 
 
 
 
 
 
                                                 
1 To learn more about scientific computing applications requiring high precision computation, see: 
http://crd.lbl.gov/~dhbailey/dhbpapers/dhb-jmb-acat08.pdf  
2 C. Tsen, M. J. Schulte, and S. Gonzalez-Navarro, "A Binary Integer Decimal-based Multiplier for 
Decimal Floating-point Adder," October 2007. 
3 Ibid. 


